73 research outputs found

    Examination of the Application Support Layer of CCSDS SOIS Using SpaceWire Communication Stack and Low-Code User Application

    Get PDF
    As a SmallSat grows, there is an increasing need for high-speed and high-functioning sub-networks, such as SpaceWire, to connect equipment to the OBC and store large amounts of optical image data. SpaceWire has the ability for time-sensitive delivery, fast communication, and flexible network topology construction. JAXA/ISAS has developed SIB2, a low-code user application that designs telemetry commands based on a database stored on the satellite. SIB2 has a code generation function called SIB2Generator, which outputs code that performs the behavior of telemetry commands during sender/receiver and is used as a template for user applications. On the other hand, the Application Support Layer of CCSDS SOIS is positioned between sub-networks and user applications. And then, service types are defined in the Application Support Layer, but no concrete implementation interface is specified. Therefore, we have implemented an examination of the Command and Data Acquisition Services layer using SIB2 and the SpaceWire communication stack. In the executed study, we adopted the SpaceWire RMAP Library, a class library that makes SpaceWire communication. Using this library, we have designed and developed the Application Support Layer, integrating the SpaceWire application stack based on the SIB2 database design and the user application code generated by SIB2Generator

    Progress in development of the neutron profile monitor for the large helical device

    Get PDF
    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 105 counts per second

    Time-resolved triton burnup measurement using the scintillating fiber detector in the Large Helical Device

    Get PDF
    Time-resolved measurement of triton burnup is performed with a scintillating fiber detector system in the deuterium operation of the large helical device. The scintillating fiber detector system is composed of the detector head consisting of 109 scintillating fibers having a diameter of 1 mm and a length of 100 mm embedded in the aluminum substrate, the magnetic registrant photomultiplier tube, and the data acquisition system equipped with 1 GHz sampling rate analogies to digital converter and the field programmable gate array. The discrimination level of 150 mV was set to extract the pulse signal induced by 14 MeV neutrons according to the pulse height spectra obtained in the experiment. The decay time of 14 MeV neutron emission rate after neutral beam is turned off measured by the scintillating fiber detector. The decay time is consistent with the decay time of total neutron emission rate corresponding to the 14 MeV neutrons measured by the neutron flux monitor as expected. Evaluation of the diffusion coefficient is conducted using a simple classical slowing-down model FBURN code. It is found that the diffusion coefficient of triton is evaluated to be less than 0.2 m2 s−1

    A study of beam ion and deuterium–deuterium fusion-born triton transports due to energetic particle-driven magnetohydrodynamic instability in the large helical device deuterium plasmas

    Get PDF
    Understanding energetic particle transport due to magnetohydrodynamic instabilities excited by energetic particles is essential to apprehend alpha particle confinement in a fusion burning plasma. In the large helical device (LHD), beam ion and deuterium–deuterium fusion-born triton transport due to resistive interchange mode destabilized by helically-trapped energetic ions (EIC) are studied employing comprehensive neutron diagnostics, such as the neutron flux monitor and a newly developed scintillating fiber detector characterized by high detection efficiency. Beam ion transport due to EIC is studied in deuterium plasmas with full deuterium or hydrogen/deuterium beam injections. The total neutron emission rate (Sn) measurement indicates that EIC induces about a 6% loss of passing transit beam ions and a 60% loss of helically-trapped ions. The loss rate of helically-trapped ions, which drive EIC, is larger than the loss rate of passing transit beam ions. Furthermore, the drop of Sn increasing linearly with the EIC amplitude shows that barely confined beam ions existing near the confinement-loss boundary are lost due to EIC. In full deuterium conditions, a study of deuterium–deuterium fusion-born triton transport due to EIC is performed by time-resolved measurement of total secondary deuterium–tritium neutron emission rate (Sn_DT). Drop of Sn_DT increases substantially with EIC amplitude to the third power and reaches up to 30%. The relation shows that not only tritons confined in confined-loss boundary, but also tritons confined in the inner region of a plasma, are substantially transported

    High detection efficiency scintillating fiber detector for time-resolved measurement of triton burnup 14 MeV neutron in deuterium plasma experiment

    Get PDF
    The behavior of the 1 MeV triton has been studied in order to understand the alpha particle confinement property in the deuterium operation of toroidal fusion devices. To obtain time evolution of the deuterium-tritium (D-T) neutron emission rate where the secondary DT neutron emission rate is approximately 1012 n/s, we designed two high detection efficiency scintillating fiber (Sci-Fi) detectors: a 1 mm-diameter scintillation fiber-based detector Sci-Fi1 and a 2 mm-diameter scintillation fiber-based detector Sci-Fi2. The test in an accelerator-based neutron generator was performed. The result shows that the directionality of each detector is 15° and 25°, respectively. It is found that detection efficiency for DT neutrons is around 0.23 counts/n cm2 for the Sci-Fi1 detector and is around 1.0 counts/n cm2 for the Sci-Fi2 detector

    Studies of energetic particle transport induced by multiple Alfvén eigenmodes using neutron and escaping energetic particle diagnostics in Large Helical Device deuterium plasmas

    Get PDF
    Studies of energetic particle transport due to energetic-particle-driven Alfvénic instability have progressed using neutron and energetic particle diagnostics in Large Helical Device deuterium plasmas. Alfvénic instability excited by injecting an intensive neutral beam was observed by a magnetic probe and a far-infrared laser interferometer. The interferometer showed Alfvénic instability composed of three modes that existed from the core to the edge of the plasma. A comparison between the observed frequency and shear Alfvén spectra suggested that the mode activity was most likely classified as an Alfvénic avalanche. A neutron fluctuation detector and a fast ion loss detector indicated that Alfvénic instability induced transport and loss of co-going transit energetic ions. The dependence of the drop rate of the neutron signal on the Alfvénic instability amplitude showed that significant transport occurred. Significant transport might be induced by the large amplitude and radially extended multiple modes, as well as a large deviation of the energetic ion orbit from the flux surface

    Development of a High Sampling Rate Data Acquisition System Working in a High Pulse Count Rate Region for Radiation Diagnostics in Nuclear Fusion Plasma Research

    No full text
    In this study, a high sampling rate data acquisition system with the ability to provide timestamp, pulse shape information, and waveform simultaneously under a sub megahertz pulse counting rate was developed for radiation diagnostics for magnetic confinement nuclear fusion plasma research. The testing of the data acquisition system under the high pulse counting rate condition using real signals was performed in an accelerator-based deuterium-deuterium fusion neutron source (Fast Neutron Source) at the Japan Atomic Energy Agency. We found that the pulse counts acquired by the system linearly increased up to 6 × 105 cps, and the count loss at 106 cps was estimated to be ~10%. The data acquisition system was applied to deuterium-deuterium neutron profile diagnostics in the deuterium gas operation of a helical-type magnetic confinement plasma device, called the Large Helical Device, to observe the radial profile of neutron emissivity for the first time in a three-dimensional magnetic confinement fusion device. Time-resolved measurements of the deuterium-deuterium fusion emission profile were performed. The experimentally observed radial neutron emission profile was consistent with numerical predictions based on the orbit-following models using experimental data. The data acquisition system was shown to have the desired performance

    An integrative approach using real-world data to identify alternative therapeutic uses of existing drugs.

    No full text
    Different computational approaches are employed to efficiently identify novel repositioning possibilities utilizing different sources of information and algorithms. It is critical to propose high-valued candidate-repositioning possibilities before conducting lengthy in vivo validation studies that consume significant resources. Here we report a novel multi-methodological approach to identify opportunities for drug repositioning. We performed analyses of real-world data (RWD) acquired from the United States Food and Drug Administration's Adverse Event Reporting System (FAERS) and the claims database maintained by the Japan Medical Data Center (JMDC). These analyses were followed by cross-validation through bioinformatics analyses of gene expression data. Inverse associations revealed using disproportionality analysis (DPA) and sequence symmetry analysis (SSA) were used to detect potential drug-repositioning signals. To evaluate the validity of the approach, we conducted a feasibility study to identify marketed drugs with the potential for treating inflammatory bowel disease (IBD). Primary analyses of the FAERS and JMDC claims databases identified psycholeptics such as haloperidol, diazepam, and hydroxyzine as candidates that may improve the treatment of IBD. To further investigate the mechanistic relevance between hit compounds and disease pathology, we conducted bioinformatics analyses of the associations of the gene expression profiles of these compounds with disease. We identified common biological features among genes differentially expressed with or without compound treatment as well as disease-perturbation data available from open sources, which strengthened the mechanistic rationale of our initial findings. We further identified pathways such as cytokine signaling that are influenced by these drugs. These pathways are relevant to pathologies and can serve as alternative targets of therapy. Integrative analysis of RWD such as those available from adverse-event databases, claims databases, and transcriptome analyses represent an effective approach that adds value to efficiently identifying potential novel therapeutic opportunities
    • 

    corecore