46 research outputs found

    Green Synthesis of ZnO Nanostructures and Their Antibacterial Activity Against Catfish Pathogen

    Get PDF
    Due to its antibacterial activity against clinical bacterial pathogens at the time of tissue development, zinc oxide (ZnO) is considered one of the most important metal oxide nanostructured materials. In this study, ZnO nanostructures were prepared using Aloe vera gel juice, which is easy, inexpensive, and ecofriendly. The nanostructures of ZnO were characterized using a variety of analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS). As a result of the XRD study, the hexagonal phase of ZnO with the structure of wurtzite has been identified. ZnO material with high heterogeneity morphology has been observed by SEM analysis. As-prepared ZnO nanostructures were tested for their antibacterial activity against the newly discovered pathogen of catfish. A ZnO sample prepared with a high concentration of Aloe vera gel possessed an inhibition zone of 13.21±0.04 mm, whereas a ZnO sample prepared with a low concentration of Aloe vera juice had an inhibition zone of 6.23±0.02 mm and a pure ZnO sample had an inhibition zone of 3.31±0.03 mm. Furthermore, we examined the effectiveness of the ZnO nanostructures on bacterial strains based on the type of nanoparticles applied to the commercial strains. In addition to their modified surface properties, small particle size, and highly toxic effects for the killingof bacterial cell growth, the Aloe vera juice assisted ZnO nanostructures demonstrated excellent antibacterial activity against the catfish pathogens

    Electrochemical water splitting based on metal oxide composite nanostructures

    No full text
    The occurrence of available energy reservoirs is decreasing steeply, therefore we are looking for an alternative and sustainable renewable energy resources. Among them, hydrogen is considered as green fuel with a high density of energy. In nature, hydrogen is not found in a free state and it is most likely present in the compound form for example H2O. Water covers almost 75% of the earth planet. To produce hydrogen from water, it requires an efficient catalyst. For this purpose, noble materials such as Pt, Ir, and Ru are efficient materials for water splitting. These precious catalysts are rare in nature, very costly, and are restricted from largescale applications. Therefore, search for a new earth-abundant and nonprecious materials is a hot spot area in the research today. Among the materials, nanomaterials are excellent candidates because of their potential properties for extended applications, particularly in energy systems. The fabrication of nanostructured materials with high specific surface area, fast charge transport, rich catalytic sites, and huge ion transport is the key challenge for turning nonprecious materials into precious catalytic materials. In this thesis, we have investigated nonprecious nanostructured materials and they are found to be efficient for electrochemical water splitting. These nanostructured materials include MoS2-TiO2, MoS2, TiO2, MoSx@NiO, NiO, nickeliron layered double hydroxide (NiFeLDH)/Co3O4, NiFeLDH, Co3O4, Cu-doped MoS2, Co3O4- CuO, CuO, etc. The composition, morphology, crystalline structure, and phase purities are investigated by a wide range of analytical instruments such as XPS, SEM, HRTEM, and XRD. The production of hydrogen/oxygen from water is obtained either in the acidic or alkaline media. Based on the functional characterization we believe that these newly produced nanostructured materials can be capitalized for the development of water splitting, batteries, and other energy-related devices

    Advanced Co3O4-CuO nano-composite based electrocatalyst for efficient hydrogen evolution reaction in alkaline media

    No full text
    In this study, we incorporate a copper impurity into (Co3O4) nanowires precursor that turn them into an active catalyst for the hydrogen evolution reaction in 1M KOH. The XRD and XPS results are in good agreement and confirmed the formation of Co3O4-CuO nano composite by wet chemical method. To date, the performance of hydrogen evolution reaction in alkaline for the composite catalyst is comparable or superior to cobalt oxide based HER electro-catalysts. The HER catalyst exhibits the lowest Tafel slope of 65 mVdec(-1) for the cobalt-based catalysts in alkaline media. A current density of 10 mA/cm(2) is achieved at a potential of 0.288 V vs reversible hydrogen electrode (RHE). The mixed transition metal oxide Co3O4-CuO based HER electro-catalyst is highly stable and durable. The EIS results demonstrates that HER is highly favorable on the Co3O4-CuO due to the relatively small charge transfer resistance (173.20 Ohm) and higher capacitance values (1.97 mF). (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved

    An efficient bifunctional electrocatalyst based on a nickel iron layered double hydroxide functionalized Co3O4 core shell structure in alkaline media

    No full text
    Developing highly active nonprecious metal and binder free bifunctional electrocatalysts for water splitting is a challenging task. In this study, we used a simple strategy to deposit a nickel iron layered double hydroxide (NiFeLDH) onto cobalt oxide (Co3O4) nanowires. The cobalt oxide nanowires are covered with thin nanosheets of NiFeLDH forming a core shell structure. The Co3O4 nanowires contain the mixed oxidation states of Co2+ and Co3+, and the surface modification of Co3O4 nanowires has shown synergetic effects due to there being more oxygen defects, catalytic sites, and enhanced electronic conductivity. Further, the core shell structure of Co3O4 nanowires demonstrated a bifunctional activity for water splitting in 1 M KOH aqueous solution. From the hydrogen evolution reaction (HER), a current density of 10 mA cm - 2 is achieved at a potential of - 0.303 V vs. reversible hydrogen electrode (RHE). Meanwhile for the case of the oxygen evolution reaction (OER), a current density of 40 mA cm - 2 is measured at a potential of 1.49 V vs. RHE. Also, this electrocatalyst has shown a considerable long- term stability of 15 h for both the HER and the OER. Importantly, electrochemical impedance spectroscopy has shown that the NiFeLDH integration onto cobalt oxide exhibited around 3 fold decrease of charge transfer resistance for both the HER and the OER in comparison with pristine cobalt oxide films, which reveals an excellent electrocatalytic activity for both faradaic processes. All these results confirm that the proposed electrocatalyst can be integrated into an efficient water splitting system

    Efficient Ni–Fe layered double hydroxides/ZnO nanostructures for photochemical water splitting

    No full text
    Zinc oxide (ZnO) nanostructures are widely investigated for photocatalytic applications but the functional properties are limited by the fast carrier recombination rate, which is an intrinsic property of ZnO. To optimize the recombination rate of ZnO, a study is carried out in which it is covered with Ni-Fe layered double hydroxides and synergistic effects are created which boosted the photocatalytic activity of ZnO. The nanostructured materials are synthesized by the low temperature aqueous chemical growth and electrodeposition methods. These nanostructures are characterized by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) technique. SEM study has revealed a Ni–Fe LDH coated ZnO NRs. The powder XRD has showed a cubic phase of the Ni-Fe layered double hydroxide on the ZnO NRs having an excellent crystalline quality. The optical characterization has shown low scattering of light for the Ni–Fe LDH coated ZnO NRs sample. The sample prepared with deposition time of 25 s showed excellent photochemical water splitting properties compared to counter photo-anodes in alkaline media. The photo response was highly stable and fast. The incident photon to current conversion efficiency for the photo-anode of Ni–Fe(LDHs)/ZnO over 25 s was 82% at a maximum absorption of 380 nm compared to the pristine ZnO NRs which has 70% at the same wavelength. This study is providing a simple, cost effective, earth abundant and environment friendly methodology for the fabrication of photo-anodes for diverse applications specifically water oxidation and solar radiation driven water splitting.Funding agencies:  department of Science and Technology, Campus Norrkoping, Linkoping University, Sweden</p

    A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures

    No full text
    The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification

    Facile efficient earth abundant NiO/C composite electrocatalyst for the oxygen evolution reaction Electronic supplementary information (ESI) available. See DOI: 10.1039/c8ra10472g

    No full text
    Due to the increasing energy consumption, designing efficient electrocatalysts for electrochemical water splitting is highly demanded. In this study, we provide a facile approach for the design and fabrication of efficient and stable electrocatalysts through wet chemical methods. The carbon material, obtained by the dehydration of sucrose sugar, provides high surface area for the deposition of NiO nanostructures and the resulting NiO/C catalysts show higher activity towards the OER in alkaline media. During the OER, a composite of NiO with 200 mg C can produce current densities of 10 and 20 mA cm(-2) at a bias of 1.45 V and 1.47 V vs. RHE, respectively. Electrochemical impedance spectroscopy experiments showed the lowest charge transfer resistance and the highest double layer capacitance in the case of the NiO/C composite with 200 mg C. The presence of C for the deposition of NiO nanostructures increases the active centers and consequently a robust electrocatalytic activity is achieved. The obtained results in terms of the low overpotential and small Tafel slope of 55 mV dec(-1) for non-precious catalysts are clear indications for the significant advancement in the field of electrocatalyst design for water splitting. This composite material based on NiO/C is simple and scalable for widespread use in various applications, especially in supercapacitors and lithium-ion batteries.Funding Agencies|Fundacao para a Ciencia e Tecnologia (FCT, Portugal) [SFRH/BPD/97453/2013]</p
    corecore