10 research outputs found

    Computed tomography angiography-guided recanalization of saphenous vein graft chronic total occlusion

    Get PDF
    Computed tomography (CT) angiography can augment conventional coronary angiography relative to length of vessel occlusion and quality of distal run-off. In this case report we describe the significance of CT angiography in the revascularization decision-making process of a patient following occlusion of both coronary artery bypass grafts

    Image overlay using alpha-blending technique

    Get PDF

    Alkaloid escholidine and its interaction with DNA structures

    Get PDF
    Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant

    The Role of miR-155 in Antitumor Immunity

    No full text
    MicroRNAs belong to a group of short non-coding RNA molecules that are involved in the regulation of gene expression at multiple levels. Their function was described two decades ago, and, since then, microRNAs have become a rapidly developing field of research. Their participation in the regulation of cellular processes, such as proliferation, apoptosis, cell growth, and migration, made microRNAs attractive for cancer research. Moreover, as a single microRNA can simultaneously target multiple molecules, microRNAs offer a unique advantage in regulating multiple cellular processes in different cell types. Many of these cell types are tumor cells and the cells of the immune system. One of the most studied microRNAs in the context of cancer and the immune system is miR-155. MiR-155 plays a role in modulating innate and adaptive immune mechanisms in distinct immune cell types. As such, miR-155 can be part of the communication between the tumor and immune cells and thus impact the process of tumor immunoediting. Several studies have already revealed its effect on antitumor immune responses, and the targeting of this molecule is increasingly implemented in cancer immunotherapy. In this review, we discuss the current knowledge of miR-155 in the regulation of antitumor immunity and the shaping of the tumor microenvironment, and the plausible implementation of miR-155 targeting in cancer therapy

    LL-37 as a Powerful Molecular Tool for Boosting the Performance of Ex Vivo-Produced Human Dendritic Cells for Cancer Immunotherapy

    No full text
    Ex vivo-produced dendritic cells (DCs) constitute the core of active cellular immunotherapy (ACI) for cancer treatment. After many disappointments in clinical trials, the current protocols for their preparation are attempting to boost their therapeutic efficacy by enhancing their functionality towards Th1 response and capability to induce the expansion of cytotoxic tumor-specific CD8+ T cells. LL-37 is an antimicrobial peptide with strong immunomodulatory potential. This potential was previously found to either enhance or suppress the desired anti-tumor DC functionality when used at different phases of their ex vivo production. In this work, we show that LL-37 can be implemented during the whole process of DC production in a way that allows LL-37 to enhance the anti-tumor functionality of produced DCs. We found that the supplementation of LL-37 during the differentiation of monocyte-derived DCs showed only a tendency to enhance their in vitro-induced lymphocyte enrichment with CD8+ T cells. The supplementation of LL-37 also during the process of DC antigen loading (pulsation) and maturation significantly enhanced the cell culture enrichment with CD8+ T cells. Moreover, this enrichment was also associated with the downregulated expression of PD-1 in CD8+ T cells, significantly higher frequency of tumor cell-reactive CD8+ T cells, and superior in vitro cytotoxicity against tumor cells. These data showed that LL-37 implementation into the whole process of the ex vivo production of DCs could significantly boost their anti-tumor performance in ACI

    Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors

    No full text
    The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently

    Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy

    No full text
    Abstract Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS

    Validation of the mIBG skeletal SIOPEN scoring method in two independent high-risk neuroblastoma populations : the SIOPEN/HR-NBL1 and COG-A3973 trials

    No full text
    Background: Validation of the prognostic value of the SIOPEN mIBG skeletal scoring system in two independent stage 4, mIBG avid, high-risk neuroblastoma populations. Results: The semi-quantitative SIOPEN score evaluates skeletal meta-iodobenzylguanidine (mIBG) uptake on a 0-6 scale in 12 anatomical regions. Evaluable mIBG scans from 216 COG-A3973 and 341 SIOPEN/HR-NBL1 trial patients were reviewed pre- and post-induction chemotherapy. The prognostic value of skeletal scores for 5-year event free survival (5 yr.-EFS) was tested in the source and validation cohorts. At diagnosis, both cohorts showed a gradual non-linear increase in risk with cumulative scores. Several approaches were explored to test the relationship between score and EFS. Ultimately, a cutoff score of <= 3 was the most useful predictor across trials. A SIOPEN score <= 3 pre-induction was found in 15% SIOPEN patients and in 22% of COG patients and increased post-induction to 60% in SIOPEN patients and to 73% in COG patients. Baseline 5 yr.-EFS rates in the SIOPEN/HR-NBL1 cohort for scores <= 3 were 47% +/- 7% versus 26% +/- 3% for higher scores at diagnosis (p < 0.007) and 36% +/- 4% versus 14% +/- 4% (p < 0.001) for scores obtained post-induction. The COG-A3973 showed 5 yr.-EFS rates for scores <= 3 of 51% +/- 7% versus 34% +/- 4% for higher scores (p < 0.001) at diagnosis and 43% +/- 5% versus 16% +/- 6% (p = 0.004) for post-induction scores. Hazard ratios (HR) significantly favoured patients with scores <= 3 after adjustment for age and MYCN-amplification. Optimal outcomes were recorded in patients who achieved complete skeletal response. Conclusions: Validation in two independent cohorts confirms the prognostic value of the SIOPEN skeletal score. In particular, patients with an absolute SIOPEN score > 3 after induction have very poor outcomes and should be considered for alternative therapeutic strategies
    corecore