7 research outputs found

    Activity-Independent Effects of CREB on Neuronal Survival and Differentiation during Mouse Cerebral Cortex Development

    Get PDF
    Neuronal survival and morphological maturation depends on the action of the transcription factor calcium responsive element binding protein (CREB), which regulates expression of several target genes in an activity-dependent manner. However, it remains largely unknown whether CREB-mediated transcription could play a role at early stages of neuronal differentiation, prior to the establishment of functional synaptic contacts. Here, we show that CREB is phosphorylated at very early stages of neuronal differentiation in vivo and in vitro, even in the absence of depolarizing agents. Using genetic tools, we also show that inhibition of CREB-signaling affects neuronal growth and survival in vitro without affecting cell proliferation and neurogenesis. Expression of A-CREB or M-CREB, 2 dominant-negative inhibitors of CREB, decreases cell survival and the complexity of neuronal arborization. Similar changes are observed in neurons treated with protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors, which also show decreased levels of pCREBSer133. Notably, expression of CREB-FY, a Tyr134Phe CREB mutant with a lower Km for phosphorylation, partly rescues the effects of PKA and CaMKII inhibition. Our data indicate that CREB-mediated signaling play important roles at early stages of cortical neuron differentiation, prior to the establishment of fully functional synaptic contacts

    Activity-Independent Effects of CREB on Neuronal Survival and Differentiation during Mouse Cerebral Cortex Development

    No full text
    Neuronal survival and morphological maturation depends on the action of the transcription factor calcium responsive element binding protein (CREB), which regulates expression of several target genes in an activity-dependent manner. However, it remains largely unknown whether CREB-mediated transcription could play a role at early stages of neuronal differentiation, prior to the establishment of functional synaptic contacts. Here, we show that CREB is phosphorylated at very early stages of neuronal differentiation in vivo and in vitro, even in the absence of depolarizing agents. Using genetic tools, we also show that inhibition of CREB-signaling affects neuronal growth and survival in vitro without affecting cell proliferation and neurogenesis. Expression of A-CREB or M-CREB, 2 dominant-negative inhibitors of CREB, decreases cell survival and the complexity of neuronal arborization. Similar changes are observed in neurons treated with protein kinase A (PKA) and Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) inhibitors, which also show decreased levels of pCREBSer133. Notably, expression of CREB-FY, a Tyr134Phe CREB mutant with a lower Km for phosphorylation, partly rescues the effects of PKA and CaMKII inhibition. Our data indicate that CREB-mediated signaling play important roles at early stages of cortical neuron differentiation, prior to the establishment of fully functional synaptic contacts.ISSN:1047-3211ISSN:1460-219

    Extracellular Vesicles Induce Mesenchymal Transition and Therapeutic Resistance in Glioblastomas through NF-κB/STAT3 Signaling

    No full text
    Glioblastoma (GBM) is the most common primary malignant brain tumor and despite optimal treatment, long-term survival remains uncommon. GBM can be roughly divided into three different molecular subtypes, each varying in aggressiveness and treatment resistance. Recent evidence shows plasticity between these subtypes in which the proneural (PN) glioma stem-like cells (GSCs) undergo transition into the more aggressive mesenchymal (MES) subtype, leading to therapeutic resistance. Extracellular vesicles (EVs) are membranous structures secreted by nearly every cell and are shown to play a key role in GBM progression by acting as multifunctional signaling complexes. Here, it is shown that EVs derived from MES cells educate PN cells to increase stemness, invasiveness, cell proliferation, migration potential, aggressiveness, and therapeutic resistance by inducing mesenchymal transition through nuclear factor-κB/signal transducer and activator of transcription 3 signaling. The findings could potentially help explore new treatment strategies for GBM and indicate that EVs may also play a role in mesenchymal transition of different tumor types
    corecore