329 research outputs found
Naphthalenones and isocoumarins of the fungus Ceratocystis fimbriata f. sp. platani
The chemical composition of the culture filtrates of Ceratocystis fimbriata f. sp. platani was investigated.
Ten compounds potentially toxic to Platanus acerifolia were isolated and identified. These metabolites were mainly
isocoumarins and naphthalenones. Three of these induced extensive necrosis on plane tree tissues
Chromatographic Properties of Different Methyl—Phenyl (1:1) Substituted Silicone Stationary Phases for Open-Tubular Gas Chromatography
The influence of different configurations of silicones having 50% methyl and 50% phenyl substitution on chromatographic properties, such as polarity and thermal stability, has been systematically investigated. Polysiloxanes composed of dimethyl and diphenyl units show very low levels of column bleed at temperatures up to 370°C, while polymers having methyl—phenyl substitution show severe bleeding at this temperature. The polarity of the latter polymers, as reflected by Kováts indices, is higher than for the polymers composed by dimethyl—diphenyl unit
Synthesis and Activity of Grape Wood Phytotoxins and Related Compounds
The synthesis of analogues and derivatives of two o-hydroxyphenylacetylenes, eutypine and sterehirsutinal,
the main phytotoxins isolated from the culture medium of Eutypa lata and Stereum hirsutum, is reported. Two
means of synthesis are described, based on cyclisation, oxidation, oxidative decarboxylation or reduction reactions,
and producing o-hydroxyphenylacetylene or benzofuran derivatives. Some of these synthetic compounds were tested
on grapevine callus in order to compare their toxicity with the natural analogues
Documentation of anthropometrics in people with cancer: a cross-site collaboration audit in four hospital settings in the UK
Background: Malnutrition is a significant risk for patients during cancer treatment. Neglecting to monitor or provide timely dietetic support can result in lower tolerance to treatments and reduced quality of life. This audit aimed to assess the completeness and accuracy of the documentation of anthropometric measurements in medical records and dietetic referral practices across four day-treatment units (DTUs) in England. Methodology: Data were collected from electronic patient records of 100 patients in each DTU attending for systemic anti-cancer treatment (SACT) over a 2-week period. Data collected included patients’ demographics, anthropometric data, referrals to dietitians, and whether the patients referred had a MUST score ≥ 2, which was calculated by the authors. Results: Findings revealed that weights and heights were documented for 58–85% and 94–98% of patients attending DTUs, respectively. On average, 55% (range of 7–85%) of patients had their body mass index (BMI) documented on the day of SACT. The Malnutrition Universal Screening Tool (MUST) was rarely completed (≤ 3% in each centre). Dietetic referral practices varied across centres. Conclusions: Findings highlight the need to improve anthropometric documentation practices in cancer centres, in order to allow better monitoring of malnutrition risk and early nutritional support interventions when needed
Skin cancer precursor immunotherapy for squamous cell carcinoma prevention
BACKGROUND: Topical calcipotriol plus 5-fluorouracil (5-FU) combination is an effective immunotherapy against actinic keratosis (AK), which is a precursor to squamous cell carcinoma (SCC). However, the long-term effectiveness of calcipotriol plus 5-FU treatment for SCC prevention is unknown.
METHODS: We performed a blinded prospective cohort study on participants of a randomized double-blind clinical trial in which a 4-day course of topical calcipotriol plus 5-FU combination was compared to Vaseline plus 5-FU (control) for AK treatment. SCC and basal cell carcinoma (BCC) incidences were assessed at 1, 2, and 3 years after trial. Tissues were analyzed for calcipotriol plus 5-FU-induced T cell immunity in the skin.
RESULTS: Calcipotriol plus 5-FU-induced tissue-resident memory T (Trm) cell formation in face and scalp skin associated with significantly higher erythema scores compared with control (P \u3c 0.01). Importantly, more participants in the test cohort remained SCC-free over the more than 1,500-day follow-up period (P = 0.0765), and significantly fewer developed SCC on the treated face and scalp within 3 years (2 of 30 [7%] versus 11 of 40 [28%] in control group, hazard ratio 0.215 [95% CI: 0.048-0.972], P = 0.032). Accordingly, significantly more epidermal Trm cells persisted in the calcipotriol plus 5-FU-treated face and scalp skin compared with control (P = 0.0028). There was no significant difference in BCC incidence between the treatment groups.
CONCLUSION: A short course of calcipotriol plus 5-FU treatment on the face and scalp is associated with induction of robust T cell immunity and Trm formation against AKs and significantly lowers the risk of SCC development within 3 years of treatment.
FUNDING: This research was supported by internal academic funds and by grants from the Burroughs Wellcome Fund, Sidney Kimmel Foundation, Cancer Research Institute, and NIH
On the Fragmentation of Ni(II) β-Diketonate-Diamine Complexes as Molecular Precursors for NiO Films: A Theoretical and Experimental Investigation
NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-pi intramolecular interaction
Toward molecular wires confined in zeolite channels for an effective transport of electronic excitation energy.
Sunlight is the fundamental energy source sustaining life on Earth. Green plants are provided of very sophisticated and highly efficient tools to exploit light, they are able to harvest sunlight and to transport electronic excitation energy by means of a particular “antenna system” to reaction centres (natural photosynthesis). The antenna consists of regular arrangements of chlorophyll molecules held at fixed positions by means of proteins. Light absorbed by any of these molecules is transported - by radiationless energy transfer (FRET) - to reaction centres, providing the energy necessary for the chemical processes to be initiated. A green leaf consists of millions of such well-organized antenna devices. A long-standing challenge has been the development of an artificial system able to mimic the photosynthetic system. Artificial antenna systems can be realized once several organized chromophores are able to absorb the incident light and to channel the excitation energy to a common acceptor component1-3. Artificial antenna can be built by incorporating dyes into the one-dimensional channels of zeolite L (ZL). ZL crystals feature strictly parallel nano sized channels arranged in hexagonal symmetry. These channels can be filled with high concentration of suitable guests. The geometric constraints imposed by the host structure allow achieving supramolecular organization of photoactive guests1. It has been shown2,that the properties of the dye-ZL systems depend on the molecular packing inside the channels, controlling the intermolecular and the dyes/framework interactions
In this work we presents a study on the optical properties of a two –dyes antenna system in which fluorenone molecules (donor molecule) and thionine(acceptor molecule) are organized in Zeolite L porosities.
To interpret the optical properties of the hybrids a detailed structural study at atomistic level was mandatory. Due to the impossibility of studying from the structural point of view a two –dyes systems, two “one-dye” hybrids (ZL/fluorenone and ZL/thionine) were firstly synthesized and characterized to investigate the intermolecular and the dyes/framework interactions4.
The results of thermogravimetric, IR, and X-ray structural refinements carried out for the one-dye system ZL/FL established that 1.5 molecules per unit cell is the maximum FL loading , in contrast with the data reported previously in literature5 and that the FL carbonyl group strong interact with a K+ of the ZL. The FL distribution at maximum loading can be consider as a self-assembly of planar dye molecules into a noncovalent nanoladder.
FL molecules organized in such a single, continuous nanostructure of dye molecules did not exhibit significant electronic interactions. Indeed, both absorption (recorded in the diffuse reflectance mode) and photoemission electronic spectra of ZL/FL systems with different FL loading scaled almost linearly in intensity with the amount dye hosted in the unit cell (ranging from 0.5 to 1.5), without significant changes of the spectral profiles. Noticeably, the combination and steady state and time resolved photoluminescence data indicated that even at the maximum loading ca. 90% of FL molecules are photoluminescent, with significant increase in the average quantum yield with respect to FL molecules in solution. Such a finding clearly indicates that excited states coupling (Davydov splitting) is not contributing to the optical properties of the material.
The structural study of the ZL/TH system revealed that the maximum possible loading of TH is equal to 0.3 molecules per unit cell in agreement with the TGA and literature data6. Short distances between the carbon, sulfur and nitrogen atoms and two water molecule sites , in turn at bond distance from the oxygen atoms of the main channel, suggested a water-mediated Th-ZL interactions7. Moreover, IR spectroscopy provided evidence of the interaction of the aromatic rings with the environment. This likely resulted in an increase of the rate of non-radiative decay of Th molecules in the electronic excited state, because only ca. 5% of Th molecules hosted in the ZL channel appeared photoluminescent.
The occurrence of energy transfer from excited FL molecules forming the noncovalent nanoladder in the ZL channels and Th, in the ground state, deposited on the external surface of ZL particles are currently under investigation.
In conclusion, we have here presented a study on the physico-chemical properties of dense molecular wires encapsulated in the one-dimensional pores arrays of Zeolite L. Concerning the optical properties of our composites, no evidence of Davydov splitting emerged from our study, indicating that one of the main competitors of the FRET mechanism is not operative notwithstanding the close packed arrangement of FL. We believe that this feature is of overwhelming relevance in view of application of such a system in artificial antenna systems
Molecular wires confined in zeolite L channels for an effective transport of electronic excitation energy: a synchrotron structural study.
Sunlight is the fundamental energy source sustaining life on Earth. Green plants are provided of very sophisticated and highly efficient tools to exploit light, they are able to harvest sunlight and to transport electronic excitation energy by means of a particular \u201cantenna system\u201d to reaction centers (natural photosynthesis).The development of an artificial system able to mimic the natural phenomenon has been a long-standing challenge. Artificial antenna systems can be realized once several organized chromophores are able to absorb the incident light and to channel the excitation energy to a common acceptor component [1-3]. The optical properties of the systems depend on the molecular packing inside the channels. Artificial antenna can be built by incorporating suitable guests into the one-dimensional channels of zeolite L (ZL). In this work we present a detailed structural study of two hybrid systems in which dyes (fluorenone and thionine) are encapsulated in zeolite L channels. These two molecules were chosen since it has been demonstrated that a \u201ctwo \u2013dyes antenna system\u201d - in which fluorenone (FL) (donor molecule) and thionine (Th) (acceptor molecule) are organized in Zeolite L porosities - shows remarkable optical properties. Due to the impossibility of studying, from the structural point of view a \u201ctwo \u2013dyes systems\u201d, two \u201cone-dye\u201d hybrids (ZL/fluorenone and ZL/thionine) were firstly synthesized and characterized [4].
The results of thermogravimetric, IR, and X-ray structural refinements carried out for the one-dye ZL/FL and ZL/Th systems established that 1.5 molecules of FL and 0.3 molecules of Th per unit cell is the maximum loading, respectively. The FL carbonyl group strong interacts with a K+ of the ZL. On the other hand, short distances between the carbon, sulfur and nitrogen atoms of Th and two water molecule sites, in turn at bond distance from the oxygen atoms of the main channel, suggested a water-mediated Th-ZL interactions. The energy transfer from excited FL molecules, forming the non-covalent nano-ladder in the ZL channel, and Th, deposited on the external surface of ZL particles, is currently under investigation.
In conclusion concerning the optical properties of our composites, no evidence of Davydov splitting emerged from our study, indicating that one of the main competitors of the FRET mechanism is not operative notwithstanding the close packed arrangement of FL. We believe that this feature is of overwhelming relevance in view of application of such a system in artificial antenna devices.
The authors acknowledge the Italian Ministry of Education, MIUR-Project: \u201cFuturo in Ricerca 2012 - ImPACT- RBFR12CLQD\u201d
Field-based tests for the assessment of physical fitness in children and adolescents practicing sport: A systematic review within the ESA program
High levels of physical fitness (PF) can positively affect both health and cognitive function, thus monitoring its levels in youth can help increase health and quality of life in adult populations later on. This systematic review aims to identify PF field-based tests used in young European populations practicing sport to find tools that are adequate for the considered target involving a new battery within the Enriched Sport Activities (ESA) project. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was followed. In the 83 identified articles, the main tests used were: vertical/horizontal jumps (for muscular strength/power); push-ups, running at maximum effort, sit-ups (for muscular strength/endurance); multistage non-intermittent and intermittent tests (for aerobic endurance); sit and reach (for flexibility); sprinting and agility T-tests (for speed and agility, respectively); 10 x 5 m shuttle run (SR) (for both speed and agility). Few studies assessed coordination, reaction time, power, and balance. Although the selected tests are widely used and validated, they do not determine all PF aspects and do not reflect sport-specific features. A final decision was made for the inclusion of the following tests: standing broad jump, seated medicine ball throw, 20 m SR test, 30 m sprint, Illinois test, and a new test, i.e., the crunning test, to assess different skill-related components at once. The use of this combination of tests allows for the assessment of all PF components and can help planning eective training programs and cultivate sporting talent
- …