75 research outputs found

    Benthic community structure and ecosystem functions in above- and below-waterfall pools in Borneo

    Get PDF
    Waterfalls are geomorphic features that often partition streams into discrete zones. Our study examined aquatic communities, litter decomposition and periphyton growth rates for above- and below-waterfall pools in Ulu Temburong National Park, Brunei. We observed higher fish densities in below-waterfall pools (0.24 fish m−2 vs. 0.02 fish m−2 in above-waterfall pools) and higher shrimp abundance in above-waterfall pools (eight shrimp/pool vs. less than one shrimp/pool in below-waterfall pools). However, macroinvertebrate densities (excluding shrimp) were similar among both pool types. Ambient periphyton was higher in below-waterfall pools in 2013 (4.3 vs. 2.8 g m−2 in above-waterfall pools) and 2014 (4.8 vs. 3.4 g m−2 in above-waterfall pools), while periphyton growth rates varied from 0.05 to 0.26 g m−2 days−1 and were significantly higher in below-waterfall pools in 2014. Leaf litter decomposition rates (0.001 to 0.024 days−1) did not differ between pool types, suggesting that neither shrimp nor fish densities had consistent impacts on this ecosystem function. Regardless, this research demonstrates the varied effects of biotic and abiotic factors on community structure and ecosystem function. Our results have highlighted the importance of discontinuities, such as waterfalls, in tropical streams.</p

    Assessing Risk in Focal Arboviral Infections: Are We Missing the Big or Little Picture?

    Get PDF
    Focal arboviral infections affecting a subset of the overall population present an often overlooked set of challenges in the assessment and reporting of risk and the detection of spatial patterns. Our objective was to assess the variation in risk when using different at-risk populations and geographic scales for the calculation of incidence risk and the detection of geographic hot-spots of infection. We explored these variations using a pediatric arbovirus, La Crosse virus (LACV), as our model.Descriptive and cluster analyses were performed on probable and confirmed cases of LACV infections reported to the Tennessee Department of Health from 1997 to 2006, using three at-risk populations (the total population, the population 18 years and younger, and the population 15 years and younger) and at two geographic levels (county and census tract) to assess the variation in incidence risk and to investigate evidence of clustering using both global and local spatial statistics. We determined that the most appropriate at-risk population to calculate incidence risk and to assess the evidence of clustering was the population 15 years and younger. Based on our findings, the most appropriate geographical level to conduct spatial analyses and report incidence risk is the census tract level. The incidence risk in the population 15 years and younger at the county level ranged from 0 to 226.5 per 100,000 persons (median 41.5) in those counties reporting cases (n = 14) and at the census tract level it ranged from 50.9 to 673.9 per 100,000 persons (median 126.7) in those census tracts reporting cases (n = 51). To our knowledge, this is the highest reported incidence risk for this population at the county level for Tennessee and at the census tract level nationally.The results of this study indicate the possibility of missing disease clusters resulting from performing incidence risk investigations of focal diseases using inappropriate at-risk populations and/or at large geographic scales. Improved disease surveillance and health planning will result through the use of well defined at-risk populations and the use of appropriate geographic scales for the analysis and reporting of diseases. The finding of a high incidence risk of LACV infections in eastern Tennessee demonstrates that the vast majority of these infections continue to be under-diagnosed and/or underreported in this region. Persistent prevention and surveillance efforts will be required to reduce exposure to infectious vectors and to detect new cases of infection in this region. Application of this study's observations in future investigations will enhance the quantification of incidence risk and the identification of high-risk groups within the population

    Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review

    Get PDF
    The inflammation process in the human body plays a central role in the pathogenesis of many chronic diseases. In addition, reactive oxygen species (ROS) exert potentially a decisive role in human body, particularly in physiological and pathological process. The chronic inflammation state could generate several types of diseases such as cancer, atherosclerosis, diabetes mellitus and arthritis, especially if it is concomitant with high levels of pro-inflammatory markers and ROS. The respiratory burst of inflammatory cells during inflammation increases the production and accumulation of ROS. However, ROS regulate various types of kinases and transcription factors such nuclear factor-kappa B which is related to the activation of pro-inflammatory genes. The exact crosstalk between pro-inflammatory markers and ROS in terms of pathogenesis and development of serious diseases is still ambitious. Many studies have been attempting to determine the mechanistic mutual relationship between ROS and pro-inflammatory markers. Therefore hereby, we review the hypothetical relationship between ROS and pro-inflammatory markers in which they have been proposed to initiate cancer, atherosclerosis, diabetes mellitus and arthritis

    About rats and jackfruit trees: modeling the carrying capacity of a Brazilian Atlantic Forest spiny-rat Trinomys dimidiatus (Günther, 1877) – Rodentia, Echimyidae – population with varying jackfruit tree (Artocarpus heterophyllus L.) abundances

    No full text
    We carried out a six-year study aimed at evaluating if and how a Brazilian Atlantic Forest small mammal community responded to the presence of the invasive exotic species Artocarpus heterophyllus, the jackfruit tree. In the surroundings of Vila Dois Rios, Ilha Grande, RJ, 18 grids were established, 10 where the jackfruit tree was present and eight were it was absent. Previous results indicated that the composition and abundance of this small mammal community were altered by the presence and density of A. heterophyllus. One observed effect was the increased population size of the spiny-rat Trinomys dimidiatus within the grids where the jackfruit trees were present. Therefore we decided to create a mathematical model for this species, based on the Verhulst-Pearl logistic equation. Our objectives were i) to calculate the carrying capacity K based on real data of the involved species and the environment; ii) propose and evaluate a mathematical model to estimate the population size of T. dimidiatus based on the monthly seed production of jackfruit tree, Artocarpus heterophyllus and iii) determinate the minimum jackfruit tree seed production to maintain at least two T. dimidiatus individuals in one study grid. Our results indicated that the predicted values by the model for the carrying capacity K were significantly correlated with real data. The best fit was found considering 20~35% energy transfer efficiency between trophic levels. Within the scope of assumed premises, our model showed itself to be an adequate simulator for Trinomys dimidiatus populations where the invasive jackfruit tree is present

    About rats and jackfruit trees: modeling the carrying capacity of a Brazilian Atlantic Forest spiny-rat Trinomys dimidiatus (G&#252;nther, 1877) &#8211; Rodentia, Echimyidae &#8211; population with varying jackfruit tree (Artocarpus heterophyllus L.) abundances

    No full text
    We carried out a six-year study aimed at evaluating if and how a Brazilian Atlantic Forest small mammal community responded to the presence of the invasive exotic species Artocarpus heterophyllus, the jackfruit tree. In the surroundings of Vila Dois Rios, Ilha Grande, RJ, 18 grids were established, 10 where the jackfruit tree was present and eight were it was absent. Previous results indicated that the composition and abundance of this small mammal community were altered by the presence and density of A. heterophyllus. One observed effect was the increased population size of the spiny-rat Trinomys dimidiatus within the grids where the jackfruit trees were present. Therefore we decided to create a mathematical model for this species, based on the Verhulst-Pearl logistic equation. Our objectives were i) to calculate the carrying capacity K based on real data of the involved species and the environment; ii) propose and evaluate a mathematical model to estimate the population size of T. dimidiatus based on the monthly seed production of jackfruit tree, Artocarpus heterophyllus and iii) determinate the minimum jackfruit tree seed production to maintain at least two T. dimidiatus individuals in one study grid. Our results indicated that the predicted values by the model for the carrying capacity K were significantly correlated with real data. The best fit was found considering 20~35% energy transfer efficiency between trophic levels. Within the scope of assumed premises, our model showed itself to be an adequate simulator for Trinomys dimidiatus populations where the invasive jackfruit tree is present

    The fluid mechanics of ureteroscope irrigation

    No full text
    Purpose To develop a physical understanding of uretero-renoscopy irrigation, we derive mathematical models from basic physical principals, and compare these predictions with the results of bench-top experiments. Mathematical modelling can be used to understand the role of inlet pressure, tip deflection, the presence of working tools, geometric properties of the instruments used, and material properties of the irrigation fluid on resulting flow rate. Materials and Methods We develop theoretical models to describe irrigation flow in an idealised setup and compare with bench-top experiments for flow through a straight scope, a scope with a deflected tip, and a scope with a working tool inserted. The bench-top experiments were performed using Boston Scientific’s LithoVue ureteroscope and a variety of Boston Scientific working tools. Standard ureteroscope working channels have circular cross-sections, but using theoretical models we investigate whether modifications to the cross-sectional geometry can enhance flow rates. Results The theoretical flow predictions are confirmed by experimental results. Tip deflection is shown to have a negligible effect on flow rate, but the presence of working tools decreases flow significantly (for a fixed driving pressure). Flow rate is predicted to improve when tools are placed at the edge of the channel, rather than the center, and modifying the cross-sectional shape from a circle to an ellipse can further increase flow rate. Conclusions A mathematical framework is formulated and shown to accurately predict the properties of ureteroscope irrigation flow. The theoretical approach has significant potential in quantifying irrigation flow and improving ureteroscope design

    The fluid mechanics of ureteroscope irrigation

    No full text
    Purpose To develop a physical understanding of uretero-renoscopy irrigation, we derive mathematical models from basic physical principals, and compare these predictions with the results of bench-top experiments. Mathematical modelling can be used to understand the role of inlet pressure, tip deflection, the presence of working tools, geometric properties of the instruments used, and material properties of the irrigation fluid on resulting flow rate. Materials and Methods We develop theoretical models to describe irrigation flow in an idealised setup and compare with bench-top experiments for flow through a straight scope, a scope with a deflected tip, and a scope with a working tool inserted. The bench-top experiments were performed using Boston Scientific’s LithoVue ureteroscope and a variety of Boston Scientific working tools. Standard ureteroscope working channels have circular cross-sections, but using theoretical models we investigate whether modifications to the cross-sectional geometry can enhance flow rates. Results The theoretical flow predictions are confirmed by experimental results. Tip deflection is shown to have a negligible effect on flow rate, but the presence of working tools decreases flow significantly (for a fixed driving pressure). Flow rate is predicted to improve when tools are placed at the edge of the channel, rather than the center, and modifying the cross-sectional shape from a circle to an ellipse can further increase flow rate. Conclusions A mathematical framework is formulated and shown to accurately predict the properties of ureteroscope irrigation flow. The theoretical approach has significant potential in quantifying irrigation flow and improving ureteroscope design
    corecore