26 research outputs found

    The consequences of feminization in breeding groups of wild fish

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.BACKGROUND: The feminization of nature by endocrine-disrupting chemicals (EDCs) is a key environmental issue affecting both terrestrial and aquatic wildlife. A crucial and as yet unanswered question is whether EDCs have adverse impacts on the sustainability of wildlife populations. There is widespread concern that intersex fish are reproductively compromised, with potential population-level consequences. However, to date, only in vitro sperm quality data are available in support of this hypothesis. OBJECTIVE: The aim of this study was to examine whether wild endocrine-disrupted fish can compete successfully in a realistic breeding scenario. METHODS: In two competitive breeding experiments using wild roach (Rutilus rutilus), we used DNA microsatellites to assign parentage and thus determine reproductive success of the adults. RESULTS: In both studies, the majority of intersex fish were able to breed, albeit with varying degrees of success. In the first study, where most intersex fish were only mildly feminized, body length was the only factor correlated with reproductive success. In the second study, which included a higher number of more severely intersex fish, reproductive performance was negatively correlated with severity of intersex. The intersex condition reduced reproductive performance by up to 76% for the most feminized individuals in this study, demonstrating a significant adverse effect of intersex on reproductive performance. CONCLUSION: Feminization of male fish is likely to be an important determinant of reproductive performance in rivers where there is a high prevalence of moderately to severely feminized males.Funding for this work was derived through the Endocrine Disruption in Catchments project, which was supported by the U.K. Department for Environment Food and Rural Affairs and the U.K. Environment Agency

    Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 ÎŒg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation
    corecore