137 research outputs found

    Protective Role for the Disulfide Isomerase PDIA3 in Methamphetamine Neurotoxicity

    Get PDF
    Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3) to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations

    MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease

    Get PDF
    MicroRNAs (miRNAs) have important roles in regulating a plethora of physiological and pathophysiogical processes including neurodegeneration. In both human immunodeficiency virus (HIV)-associated dementia in humans and its monkey model simian immunodeficiency virus encephalitis (SIVE), we find miR-21, a miRNA largely known for its link to oncogenesis, to be significantly upregulated in the brain. In situ hybridization of the diseased brain sections revealed induction of miR-21 in neurons. miR-21 can be induced in neurons by prolonged N-methyl--aspartic acid receptor stimulation, an excitotoxic process active in HIV and other neurodegenerative diseases. Introduction of miR-21 into human neurons leads to pathological functional defects. Furthermore, we show that miR-21 specifically targets the mRNA of myocyte enhancer factor 2C (MEF2C), a transcription factor crucial for neuronal function, and reduces its expression. MEF2C is dramatically downregulated in neurons of HIV-associated dementia patients, as well as monkeys with SIVE. Together, this study elucidates a novel role for miR-21 in the brain, not only as a potential signature of neurological disease, but also as a crucial effector of HIV-induced neuronal dysfunction and neurodegeneration

    Contributions of Mamu-A*01 Status and TRIM5 Allele Expression, But Not CCL3L Copy Number Variation, to the Control of SIVmac251 Replication in Indian-Origin Rhesus Monkeys

    Get PDF
    CCL3 is a ligand for the HIV-1 co-receptor CCR5. There have recently been conflicting reports in the literature concerning whether CCL3-like gene (CCL3L) copy number variation (CNV) is associated with resistance to HIV-1 acquisition and with both viral load and disease progression following infection with HIV-1. An association has also been reported between CCL3L CNV and clinical sequelae of the simian immunodeficiency virus (SIV) infection in vivo in rhesus monkeys. The present study was initiated to explore the possibility of an association of CCL3L CNV with the control of virus replication and AIDS progression in a carefully defined cohort of SIVmac251-infected, Indian-origin rhesus monkeys. Although we demonstrated extensive variation in copy number of CCL3L in this cohort of monkeys, CCL3L CNV was not significantly associated with either peak or set-point plasma SIV RNA levels in these monkeys when MHC class I allele Mamu-A*01 was included in the models or progression to AIDS in these monkeys. With 66 monkeys in the study, there was adequate power for these tests if the correlation of CCL3L and either peak or set-point plasma SIV RNA levels was 0.34 or 0.36, respectively. These findings call into question the premise that CCL3L CNV is important in HIV/SIV pathogenesis

    Minocycline Inhibition of Monocyte Activation Correlates with Neuronal Protection in SIV NeuroAIDS

    Get PDF
    Background: Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline’s functions are not well defined. Methods: Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied. Results: Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/ macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/ Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation. Conclusion: Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation. Citation: Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, et al. (2011) Minocycline Inhibition of Monocyte Activation Correlate

    Lung Epithelial Injury by B. Anthracis Lethal Toxin Is Caused by MKK-Dependent Loss of Cytoskeletal Integrity

    Get PDF
    Bacillus anthracis lethal toxin (LT) is a key virulence factor of anthrax and contributes significantly to the in vivo pathology. The enzymatically active component is a Zn2+-dependent metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MKKs). Using ex vivo differentiated human lung epithelium we report that LT destroys lung epithelial barrier function and wound healing responses by immobilizing the actin and microtubule network. Long-term exposure to the toxin generated a unique cellular phenotype characterized by increased actin filament assembly, microtubule stabilization, and changes in junction complexes and focal adhesions. LT-exposed cells displayed randomly oriented, highly dynamic protrusions, polarization defects and impaired cell migration. Reconstitution of MAPK pathways revealed that this LT-induced phenotype was primarily dependent on the coordinated loss of MKK1 and MKK2 signaling. Thus, MKKs control fundamental aspects of cytoskeletal dynamics and cell motility. Even though LT disabled repair mechanisms, agents such as keratinocyte growth factor or dexamethasone improved epithelial barrier integrity by reducing cell death. These results suggest that co-administration of anti-cytotoxic drugs may be of benefit when treating inhalational anthrax

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (Pβ€Š=β€Š0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16βˆ’ monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16βˆ’ monocytes (Pβ€Š=β€Š0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16βˆ’ subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16βˆ’ monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (Pβ€Š=β€Š0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16βˆ’ monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16βˆ’ monocytes (Pβ€Š=β€Š0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16βˆ’ subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16βˆ’ monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Pathogenesis of HIV in the Central Nervous System

    Get PDF
    HIV can infect the brain and impair central nervous system (CNS) function. Combination antiretroviral therapy (cART) has not eradicated CNS complications. HIV-associated neurocognitive disorders (HAND) remain common despite cART, although attenuated in severity. This may result from a combination of factors including inadequate treatment of HIV reservoirs such as circulating monocytes and glia, decreased effectiveness of cART in CNS, concurrent illnesses, stimulant use, and factors associated with prescribed drugs, including antiretrovirals. This review highlights recent investigations of HIV-related CNS injury with emphasis on cART-era neuropathological mechanisms in the context of both US and international settings
    • …
    corecore