66 research outputs found

    Power grip, pinch grip, manual muscle testing or thenar atrophy - which should be assessed as a motor outcome after carpal tunnel decompression? A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objective assessment of motor function is frequently used to evaluate outcome after surgical treatment of carpal tunnel syndrome (CTS). However a range of outcome measures are used and there appears to be no consensus on which measure of motor function effectively captures change. The purpose of this systematic review was to identify the methods used to assess motor function in randomized controlled trials of surgical interventions for CTS. A secondary aim was to evaluate which instruments reflect clinical change and are psychometrically robust.</p> <p>Methods</p> <p>The bibliographic databases Medline, AMED and CINAHL were searched for randomized controlled trials of surgical interventions for CTS. Data on instruments used, methods of assessment and results of tests of motor function was extracted by two independent reviewers.</p> <p>Results</p> <p>Twenty-two studies were retrieved which included performance based assessments of motor function. Nineteen studies assessed power grip dynamometry, fourteen studies used both power and pinch grip dynamometry, eight used manual muscle testing and five assessed the presence or absence of thenar atrophy. Several studies used multiple tests of motor function. Two studies included both power and pinch strength and reported descriptive statistics enabling calculation of effect sizes to compare the relative responsiveness of grip and pinch strength within study samples. The study findings suggest that tip pinch is more responsive than lateral pinch or power grip up to 12 weeks following surgery for CTS.</p> <p>Conclusion</p> <p>Although used most frequently and known to be reliable, power and key pinch dynamometry are not the most valid or responsive tools for assessing motor outcome up to 12 weeks following surgery for CTS. Tip pinch dynamometry more specifically targets the thenar musculature and appears to be more responsive. Manual muscle testing, which in theory is most specific to the thenar musculature, may be more sensitive if assessed using a hand held dynamometer – the Rotterdam Intrinsic Handheld Myometer. However further research is needed to evaluate its reliability and responsiveness and establish the most efficient and psychometrically robust method of evaluating motor function following surgery for CTS.</p

    Review of Inverse Laplace Transform Algorithms for Laplace-Space Numerical Approaches

    Full text link
    A boundary element method (BEM) simulation is used to compare the efficiency of numerical inverse Laplace transform strategies, considering general requirements of Laplace-space numerical approaches. The two-dimensional BEM solution is used to solve the Laplace-transformed diffusion equation, producing a time-domain solution after a numerical Laplace transform inversion. Motivated by the needs of numerical methods posed in Laplace-transformed space, we compare five inverse Laplace transform algorithms and discuss implementation techniques to minimize the number of Laplace-space function evaluations. We investigate the ability to calculate a sequence of time domain values using the fewest Laplace-space model evaluations. We find Fourier-series based inversion algorithms work for common time behaviors, are the most robust with respect to free parameters, and allow for straightforward image function evaluation re-use across at least a log cycle of time

    Enhancing Production of Bio-Isoprene Using Hybrid MVA Pathway and Isoprene Synthase in E. coli

    Get PDF
    The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the “upper pathway” which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation

    Physiological Roles of ArcA, Crp, and EtrA and Their Interactive Control on Aerobic and Anaerobic Respiration in Shewanella oneidensis

    Get PDF
    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters

    Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators (“potentiators” and “correctors”), but ΔF508-CFTR can still be rapidly degraded via a lysosomal pathway involving the CFTR-associated ligand (CAL), which binds CFTR via a PDZ interaction domain. We present a study that goes from theory, to new structure-based computational design algorithms, to computational predictions, to biochemical testing and ultimately to epithelial-cell validation of novel, effective CAL PDZ inhibitors (called “stabilizers”) that rescue ΔF508-CFTR activity. To design the “stabilizers”, we extended our structural ensemble-based computational protein redesign algorithm to encompass protein-protein and protein-peptide interactions. The computational predictions achieved high accuracy: all of the top-predicted peptide inhibitors bound well to CAL. Furthermore, when compared to state-of-the-art CAL inhibitors, our design methodology achieved higher affinity and increased binding efficiency. The designed inhibitor with the highest affinity for CAL (kCAL01) binds six-fold more tightly than the previous best hexamer (iCAL35), and 170-fold more tightly than the CFTR C-terminus. We show that kCAL01 has physiological activity and can rescue chloride efflux in CF patient-derived airway epithelial cells. Since stabilizers address a different cellular CF defect from potentiators and correctors, our inhibitors provide an additional therapeutic pathway that can be used in conjunction with current methods
    corecore