234 research outputs found

    Carcinoma-associated fibroblasts stimulate tumor progression of initiated human epithelium

    Get PDF
    The present study demonstrates that fibroblasts associated with carcinomas stimulate tumor progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombination system and in an in vitro coculture system. Human prostatic carcinoma-associated fibroblasts grown with initiated human prostatic epithelial cells dramatically stimulated growth and altered histology of the epithelial population. This effect was not detected when normal prostatic fibroblasts were grown with the initiated epithelial cells under the same experimental conditions. In contrast, carcinoma-associated fibroblasts did not affect growth of normal human prostatic epithelial cells under identical conditions. From these data, we conclude that in this human prostate cancer model, carcinoma-associated fibroblasts stimulate progression of tumorigenesis. Thus, carcinoma-associated fibroblasts can direct tumor progression of an initiated prostate epithelial cell

    Differential down-modulation of HLA class I and II molecule expression on human tumor cell lines upon in vivo transfer

    Get PDF
    Previous evidence from our laboratory showed that Epstein–Barr virus–immortalized lymphoblastoid B cells undergo a prominent down-modulation of HLA-II molecule expression when injected intraperitoneally in SCID mice, while HLA-I remains almost unaffected. Since this phenomenon can alter the experimental outcome of therapeutic protocols of adoptive cell therapy, we decided to evaluate the behavior of MHC antigens in a panel of cell lines belonging to the B- and T-cell lineages, as well as in epithelial tumor cell lines. Cells were administered in mice either intraperitoneally or subcutaneously and recovered 4 days later for HLA molecule expression analysis. Collected data showed a highly heterogeneous in vivo behavior of the various cell lines, which could alternatively down-modulate, completely abrogate or maintain unchanged the expression of either MHC-I or MHC-II molecules. Moreover, the site of injection impacted differentially on these aspects. Although such phenomena still lack a comprehensive clarification, epigenetic mechanisms are likely to be involved as epigenetic drugs could partially counteract MHC down-modulation in vivo. Nonetheless, it has to be pointed out that careful attention must be paid to the assessment of therapeutic efficacy of translational protocols of adoptive immunotherapy, as modulation of MHC molecules on human target cells when transferred in a mouse environment could readily interfere with the desired and expected therapeutic effects

    On the theory of tumor self-seeding: implications for metastasis progression in humans

    Get PDF
    Metastasis remains the leading cause of death among cancer patients because few effective treatment options are available. A recent paper proposes a new twist on metastasis. The paper shows that circulating tumor cells can return to the primary tumor, a process termed tumor self-seeding or cross-seeding, and that this helps breeding tumor cells that give rise to aggressive metastatic variants. A viewpoint presented here addresses the implications of these studies for human cancer metastasis

    Promotion of variant human mammary epithelial cell outgrowth by ionizing radiation: an agent-based model supported by in vitro studies

    Get PDF
    IntroductionMost human mammary epithelial cells (HMEC) cultured from histologically normal breast tissues enter a senescent state termed stasis after 5 to 20 population doublings. These senescent cells display increased size, contain senescence associated beta-galactosidase activity, and express cyclin-dependent kinase inhibitor, p16INK4A (CDKN2A; p16). However, HMEC grown in a serum-free medium, spontaneously yield, at low frequency, variant (v) HMEC that are capable of long-term growth and are susceptible to genomic instability. We investigated whether ionizing radiation, which increases breast cancer risk in women, affects the rate of vHMEC outgrowth.MethodsPre-stasis HMEC cultures were exposed to 5 to 200 cGy of sparsely (X- or gamma-rays) or densely (1 GeV/amu 56Fe) ionizing radiation. Proliferation (bromodeoxyuridine incorporation), senescence (senescence-associated beta-galactosidase activity), and p16 expression were assayed in subcultured irradiated or unirradiated populations four to six weeks following radiation exposure, when patches of vHMEC became apparent. Long-term growth potential and p16 promoter methylation in subsequent passages were also monitored. Agent-based modeling, incorporating a simple set of rules and underlying assumptions, was used to simulate vHMEC outgrowth and evaluate mechanistic hypotheses.ResultsCultures derived from irradiated cells contained significantly more vHMEC, lacking senescence associated beta-galactosidase or p16 expression, than cultures derived from unirradiated cells. As expected, post-stasis vHMEC cultures derived from both unirradiated and irradiated cells exhibited more extensive methylation of the p16 gene than pre-stasis HMEC cultures. However, the extent of methylation of individual CpG sites in vHMEC samples did not correlate with passage number or treatment. Exposure to sparsely or densely ionizing radiation elicited similar increases in the numbers of vHMEC compared to unirradiated controls. Agent-based modeling indicated that radiation-induced premature senescence of normal HMEC most likely accelerated vHMEC outgrowth through alleviation of spatial constraints. Subsequent experiments using defined co-cultures of vHMEC and senescent cells supported this mechanism.ConclusionsOur studies indicate that ionizing radiation can promote the outgrowth of epigenetically altered cells with pre-malignant potential

    Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    Get PDF
    INTRODUCTION: Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. METHODS: We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. RESULTS: Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. CONCLUSION: Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

    Morphometric characteristics of basal cell carcinoma peritumoral stroma varies among basal cell carcinoma subtypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role that the peritumoral stroma plays in the growth of tumours is currently poorly understood. In this manuscript the morphometric characteristics of basal cell carcinoma subtypes and their associated peritumoral stromas are presented.</p> <p>Methods</p> <p>Ninety eight digitized basal cell carcinoma histology slides were categorized as infiltrative, nodular, or superficial subtypes, and were analysed using a combination of manual and computer-assisted approaches. The morphometric characteristics of the tumour nests and their associated peritumoral stroma were quantified, and the presence of a marked immune reaction or elastosis was noted.</p> <p>Results</p> <p>The tumour to stroma ratio was different among each tumour subtype. Elastosis was identified in a greater proportion of the infiltrative tumours.</p> <p>Conclusions</p> <p>Quantitative differences exist between the peritumoral stroma of basal cell carcinoma subtypes. Future work exploring the relation between these morphometric differences and biochemical variations in peritumoral stroma may further our understanding of the biology of carcinoma development.</p> <p>Trial Registration</p> <p>Not applicable.</p

    Breast Cancer Cells Induce Cancer-Associated Fibroblasts to Secrete Hepatocyte Growth Factor to Enhance Breast Tumorigenesis

    Get PDF
    It has been well documented that microenvironment consisting of stroma affects breast cancer progression. However, the mechanisms by which cancer cells and fibroblasts, the major cell type in stroma, interact with each other during tumor development remains to be elucidated. Here, we show that the human cancer-associated fibroblasts (CAFs) had higher activity in enhancing breast tumorigenecity compared to the normal tissue-associated fibroblasts (NAFs) isolated from the same patients. The expression level of hepatocyte growth factor (HGF) in these fibroblasts was positively correlated with their ability to enhance breast tumorigenesis in mice. Deprivation of HGF using a neutralizing antibody reduced CAF-mediated colony formation of human breast cancer cells, indicating that CAFs enhanced cancer cell colony formation mainly through HGF secretion. Co-culture with human breast cancer MDA-MB-468 cells in a transwell system enhanced NAFs to secret HGF as well as promote tumorigenecity. The newly gained ability of these “educated” NAFs became irreversible after continuing this process till fourth passage. These results suggested that breast cancer cells could alter the nature of its surrounding fibroblasts to secrete HGF to support its own progression through paracrine signaling

    Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1

    Get PDF
    Tumor growth is intimately linked with stromal interactions. Myeloid derived suppressor cells (MDSCs) are dramatically elevated in cancer patients and tumor bearing mice. MDSCs modulate the tumor microenvironment through attenuating host immune response and increasing vascularization.In searching for molecular mediators responsible for pro-tumor functions, we found that regulator of G protein signaling-2 (Rgs2) is highly increased in tumor-derived MDSCs compared to control MDSCs. We further demonstrate that hypoxia, a common feature associated with solid tumors, upregulates the gene expression. Genetic deletion of Rgs2 in mice resulted in a significant retardation of tumor growth, and the tumors exhibit decreased vascular density and increased cell death. Interestingly, deletion of Rgs2 in MDSCs completely abolished their tumor promoting function, suggesting that Rgs2 signaling in MDSCs is responsible for the tumor promoting function. Cytokine array profiling identified that Rgs2-/- tumor MDSCs produce less MCP-1, leading to decreased angiogenesis, which could be restored with addition of recombinant MCP-1.Our data reveal Rgs2 as a critical regulator of the pro-angiogenic function of MDSCs in the tumor microenvironment, through regulating MCP-1 production

    Image-Based Assessment of Growth and Signaling Changes in Cancer Cells Mediated by Direct Cell-Cell Contact

    Get PDF
    Many important biological processes are controlled through cell-cell interactions, including the colonization of metastatic tumor cells and the control of differentiation of stem cells within their niche. Despite the crucial importance of the cellular environment in regulating cellular signaling, in vitro methods for the study of such interactions are difficult and/or indirect.We report on the development of an image-based method for distinguishing two cell types grown in coculture. Furthermore, cells of one type that are in direct contact with cells of a second type (adjacent cells) can be analyzed separately from cells that are not within a single well. Changes are evaluated using population statistics, which are useful in detecting subtle changes across two populations. We have used this system to characterize changes in the LNCaP prostate carcinoma cell line when grown in contact with human vascular endothelial cells (HUVECs). We find that the expression and phosphorylation of WWOX is reduced in LNCaP cells when grown in direct contact with HUVECs. Reduced WWOX signaling has been associated with reduced activation or expression of JNK and p73. We find that p73 levels are also reduced in LNCaP cells grown in contact with HUVECs, but we did not observe such a change in JNK levels.We find that the method described is statistically robust and can be adapted to a wide variety of studies where cell function or signaling are affected by heterotypic cell-cell contact. Ironically, a potential challenge to the method is its high level of sensitivity is capable of classifying events as statistically significant (due to the high number cells evaluated individually), when the biological effect may be less clear. The methodology would be best used in conjunction with additional methods to evaluate the biological role of potentially subtle differences between populations. However, many important events, such as the establishment of a metastatic tumor, occur through rare but important changes, and methods such as we describe here can be used to identify and characterize the contribution of the environment to these changes

    New highlights on stroma–epithelial interactions in breast cancer

    Get PDF
    Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches
    corecore