6,426 research outputs found

    Effects of turbulence in the atmosphere of Venus on Pioneer Venus radio, phase 2

    Get PDF
    Two problems related to the effects of turbulence in the atmosphere of Venus on the Pioneer entry probe radio link were studied. In the first problem, the cross correlation between the log amplitude and phase fluctuations of the Pioneer Venus communications link is examined. Data show that for fluctuation frequencies above approximately 1 Hz there is little or no correlation. For frequencies below this region the correlation is weak and the square root of the coherence has a peak value close to 0.65. The second problem consists of interferring turbulence characteristics of the Venus atmosphere from the Mariner 5 phase fluctuations. Data show that with the data processing techniques developed and currently available, the phase error due to oscillator drift, assumed trajectory delay, and spline curve fit exceed the turbulence induced fluctuations. Results show that it is not possible to interfere with the turbulence characteristics from Mariner 5 phase fluctuations

    A deep, wide-field search for substellar members in NGC 2264

    Full text link
    We report the first results of our ongoing campaign to discover the first brown dwarfs (BD) in NGC 2264, a young (3 Myr), populous star forming region for which our optical studies have revealed a very high density of potential candidates - 236 in << 1 deg2^2 - from the substellar limit down to at least \sim 20 MJup_{\rm Jup} for zero reddening. Candidate BD were first selected using wide field (I,zI,z) band imaging with CFH12K, by reference to current theoretical isochrones. Subsequently, 79 (33%) of the I,zI,z sample were found to have near-infrared 2MASS photometry (JHKsJHK_s ±\pm 0.3 mag. or better), yielding dereddened magnitudes and allowing further investigation by comparison with the location of NextGen and DUSTY isochrones in colour-colour and colour-magnitude diagrams involving various combinations of II,JJ,HH and KsK_s. We discuss the status and potential substellarity of a number of relatively unreddened (Av_{\rm v} << 5) likely low-mass members in our sample, but in spite of the depth of our observations in I,zI,z, we are as yet unable to unambiguously identify substellar candidates using only 2MASS data. Nevertheless, there are excellent arguments for considering two faint (observed II \sim 18.4 and 21.2) objects as cluster candidates with masses respectively at or rather below the hydrogen burning limit. More current candidates could be proven to be cluster members with masses around 0.1 M_{\odot} {\it via} gravity-sensitive spectroscopy, and deeper near-infrared imaging will surely reveal a hitherto unknown population of young brown dwarfs in this region, accessible to the next generation of deep near-infrared surveys.Comment: 10 pages, 12 figures, accepted by A&

    Aircraft control system

    Get PDF
    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied

    Calculation of three-dimensional compressible laminar and turbulent boundary flows. Three-dimensional compressible boundary layers of reacting gases over realistic configurations

    Get PDF
    A three-dimensional boundary-layer code was developed for particular application to realistic hypersonic aircraft. It is very general and can be applied to a wide variety of boundary-layer flows. Laminar, transitional, and fully turbulent flows of compressible, reacting gases are efficiently calculated by use of the code. A body-oriented orthogonal coordinate system is used for the calculation and the user has complete freedom in specifying the coordinate system within the restrictions that one coordinate must be normal to the surface and the three coordinates must be mutually orthogonal

    Free-stream noise and transition measurements on a cone in a Mach 3.5 pilot low-disturbance tunnel

    Get PDF
    A small scale Mach 3.5 wind tunnel incorporating certain novel design features and intended for boundary-layer-transition research has been tested. The free stream noise intensities and spectral distributions were determined throughout the test section for several values of unit Reynolds number and for nozzle boundary layer bleed on and off. The boundary layer transition location on a slender cone and the response of this to changes in the noise environment were determined. Root mean square free stream noise levels ranged from less than one tenth up to values approaching those for conventional nozzles, with the lowest values prevailing at upstream locations within the nozzle. For low noise conditions, cone transition Reynolds numbers were in the range of those for free flight; whereas for high noise conditions, they were in the range of those in conventional tunnels

    New, nearby bright southern ultracool dwarfs

    Get PDF
    We report the discovery of twenty-one hitherto unknown bright southern ultracool dwarfs with spectral types in the range M7 to L5.5, together with new observations of a further three late M dwarfs previously confirmed. Three more objects are already identified in the literature as high proper motion stars;we derive their spectral types for the first time. All objects were selected from the 2MASS All Sky and SuperCOSMOS point source databases on the basis of their optical/near-infrared colours, JJ-band magnitudes and proper motions. Low resolution (R \sim 1000) JHJH spectroscopy with the ESO/NTT SOFI spectrograph has confirmed the ultracool nature of 24 targets, out of a total of 25 candidates observed. Spectral types are derived by direct comparison with template objects and compared to results from H2_2O and FeH indices. We also report the discovery of one binary, as revealed by SOFI acquisition imaging; spectra were taken for both components. The spectral types of the two components are L2 and L4 and the distance \sim 19 pc. Spectroscopic distances and transverse velocities are derived for the sample. Two \sim L5 objects lie only \sim 10 pc distant. Such nearby objects are excellent targets for further study to derive their parallaxes and to search for fainter, later companions with AO and/or methane imaging.Comment: 11 pages, 10 figures, accepted to MNRA

    Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called ‘agnostic’ technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries

    Analytical and experimental study of ablation material for rocket engine application Final report

    Get PDF
    Techniques for rating performance of ablative materials in liquid-propellant rocket engine

    Update: Accurate Determinations of alpha_s from Realistic Lattice QCD

    Full text link
    We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.Comment: 12 pages, 2 figures, 4 table

    New brown dwarfs in Upper Sco using UKIDSS Galactic Cluster Survey science verification data

    Get PDF
    We present first results from a deep (J = 18.7), wide-field (6.5 square degrees) infrared (ZYJHK) survey in the Upper Sco association conducted within the science verification phase of the UKIRT Infrared Deep Sky Survey Galactic Cluster Survey (GCS). Cluster members define a sequence well separated from field stars in the (Z-J,Z) colour-magnitude diagram. We have selected a total of 164 candidates with J = 10.5-18.7 mag from the (Z-J,Z) and (Y-J,Y) diagrams. We further investigated the location of those candidates in the other colour-magnitude and colour-colour diagrams to weed out contaminants. The cross-correlation of the GCS catalogue with the 2MASS database confirms the membership of 116 photometric candidates down to 20 Jupiter masses as they lie within a 2 sigma circle centred on the association mean motion. The final list of cluster members contains 129 sources with masses between 0.3 and 0.007 Msun. We extracted a dozen new low-mass brown dwarfs below 20 Mjup, the limit of previous surveys in the region. Finally, we have derived the mass function in Upper Sco over the 0.3-0.01 Msun mass range, best fit by a single segment with a slope of index alpha = 0.6+/-0.1, in agreement with previous determination in open clusters
    corecore