394,265 research outputs found

    Statistical study of free magnetic energy and flare productivity of solar active regions

    Full text link
    Photospheric vector magnetograms from Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both non-linear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with ARs' flare index (FI) and find that there is a weak correlation (<60%<60\%) between FME and FI. FME shows slightly improved flare predictability relative to total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.Comment: The paper was submitted to ApJ and it is accepted no

    Exponential Decay for Damped Klein-Gordon Equations on Asymptotically Cylindrical and Conic Manifolds

    Full text link
    We study the decay of the global energy for the damped Klein-Gordon equation on non-compact manifolds with finitely many cylindrical and subconic ends up to bounded perturbation. We prove that under the Geometric Control Condition, the decay is exponential, and that under the weaker Network Control Condition, the decay is logarithmic, by developing the global Carleman estimate with multiple weights

    Composite fermi liquids in the lowest Landau level

    Get PDF
    We study composite fermi liquid (CFL) states in the lowest Landau level (LLL) limit at a generic filling ν=1n\nu = \frac{1}{n}. We begin with the old observation that, in compressible states, the composite fermion in the lowest Landau level should be viewed as a charge-neutral particle carrying vorticity. This leads to the absence of a Chern-Simons term in the effective theory of the CFL. We argue here that instead a Berry curvature should be enclosed by the fermi surface of composite fermions, with the total Berry phase fixed by the filling fraction ϕB=−2πν\phi_B=-2\pi\nu. We illustrate this point with the CFL of fermions at filling fractions ν=1/2q\nu=1/2q and (single and two-component) bosons at ν=1/(2q+1)\nu=1/(2q+1). The Berry phase leads to sharp consequences in the transport properties including thermal and spin Hall conductances, which in the RPA approximation are distinct from the standard Halperin-Lee-Read predictions. We emphasize that these results only rely on the LLL limit, and do not require particle-hole symmetry, which is present microscopically only for fermions at ν=1/2\nu=1/2. Nevertheless, we show that the existing LLL theory of the composite fermi liquid for bosons at ν=1\nu=1 does have an emergent particle-hole symmetry. We interpret this particle-hole symmetry as a transformation between the empty state at ν=0\nu=0 and the boson integer quantum hall state at ν=2\nu=2. This understanding enables us to define particle-hole conjugates of various bosonic quantum Hall states which we illustrate with the bosonic Jain and Pfaffian states. The bosonic particle-hole symmetry can be realized exactly on the surface of a three-dimensional boson topological insulator. We also show that with the particle-hole and spin SU(2)SU(2) rotation symmetries, there is no gapped topological phase for bosons at ν=1\nu=1.Comment: 16 pages, 1 figure, new version with minor change
    • …
    corecore