246 research outputs found

    The development and application of time resolved PIV at the University of Strathclyde

    Get PDF
    This paper describes the development of time resolved particle image velocimetry (PIV) within the Department of Mechanical Engineering at the University of Strathclyde. The Department's first PIV systems were developed on a limited budget and used existing and second hand equipment. The original technique which, employed 16mm high speed cinematography, is described. The introduction and development of low cost systems employing high speed digital video (HSDV) is discussed and, finally, the Department's new time resolved PIV system, supplied by Dantec Dynamics, is introduced. For each of the PIV systems that have been developed a critical analysis of their functionality is given and samples of the data that they have been produced are shown. Data are presented from systems such as de-rotated centrifugal impellers, air bubbles growing in columns of water, pulsatile jets and vortex shedding

    A crossing probability for critical percolation in two dimensions

    Get PDF
    Langlands et al. considered two crossing probabilities, pi_h and pi_{hv}, in their extensive numerical investigations of critical percolation in two dimensions. Cardy was able to find the exact form of pi_h by treating it as a correlation function of boundary operators in the Q goes to 1 limit of the Q state Potts model. We extend his results to find an analogous formula for pi_{hv} which compares very well with the numerical results.Comment: 8 pages, Latex2e, 1 figure, uuencoded compressed tar file, (1 typo changed

    Fractional chemotaxis diffusion equations

    Get PDF
    We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modeling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macromolecular crowding. The mesoscopic models are formulated using continuous time random walk equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macromolecular crowding or other obstacles

    Fractional Chemotaxis Diffusion Equations

    Get PDF
    We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecular crowding. The mesoscopic models are formulated using Continuous Time Random Walk master equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macro-molecular crowding or other obstacles.Comment: 25page

    Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces

    Get PDF
    We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.Comment: 5 page

    Deformed strings in the Heisenberg model

    Full text link
    We investigate solutions to the Bethe equations for the isotropic S = 1/2 Heisenberg chain involving complex, string-like rapidity configurations of arbitrary length. Going beyond the traditional string hypothesis of undeformed strings, we describe a general procedure to construct eigenstates including strings with generic deformations, discuss general features of these solutions, and provide a number of explicit examples including complete solutions for all wavefunctions of short chains. We finally investigate some singular cases and show from simple symmetry arguments that their contribution to zero-temperature correlation functions vanishes.Comment: 34 pages, 13 figure

    Mesoscopic description of reactions under anomalous diffusion: A case study

    Full text link
    Reaction-diffusion equations deliver a versatile tool for the description of reactions in inhomogeneous systems under the assumption that the characteristic reaction scales and the scales of the inhomogeneities in the reactant concentrations separate. In the present work we discuss the possibilities of a generalization of reaction-diffusion equations to the case of anomalous diffusion described by continuous-time random walks with decoupled step length and waiting time probability densities, the first being Gaussian or Levy, the second one being an exponential or a power-law lacking the first moment. We consider a special case of an irreversible or reversible A ->B conversion and show that only in the Markovian case of an exponential waiting time distribution the diffusion- and the reaction-term can be decoupled. In all other cases, the properties of the reaction affect the transport operator, so that the form of the corresponding reaction-anomalous diffusion equations does not closely follow the form of the usual reaction-diffusion equations

    An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations

    Get PDF
    In this work, we present a new implicit numerical scheme for fractional subdiffusion equations. In this approach we use the Keller Box method [1] to spatially discretise the fractional subdiffusion equation and we use a modified L1 scheme (ML1), similar to the L1 scheme originally developed by Oldham and Spanier [2], to approximate the fractional derivative. The stability of the proposed method was investigated by using Von-Neumann stability analysis. We have proved the method is unconditionally stable when 0<λq<min(1μ0,2γ)0<{\lambda}_q <\min(\frac{1}{\mu_0},2^\gamma) and 0<γ10<\gamma \le 1, and demonstrated the method is also stable numerically in the case 1μ0<λq2γ\frac{1}{\mu_0}<{\lambda}_q \le 2^\gamma and log32γ1\log_3{2} \le \gamma \le 1. The accuracy and convergence of the scheme was also investigated and found to be of order O(Δt1+γ)O(\Delta t^{1+\gamma}) in time and O(Δx2)O(\Delta x^2) in space. To confirm the accuracy and stability of the proposed method we provide three examples with one including a linear reaction term

    Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation

    Full text link
    Extensive Monte-Carlo simulations were performed to evaluate the excess number of clusters and the crossing probability function for three-dimensional percolation on the simple cubic (s.c.), face-centered cubic (f.c.c.), and body-centered cubic (b.c.c.) lattices. Systems L x L x L' with L' >> L were studied for both bond (s.c., f.c.c., b.c.c.) and site (f.c.c.) percolation. The excess number of clusters b~\tilde {b} per unit length was confirmed to be a universal quantity with a value b~0.412\tilde {b} \approx 0.412. Likewise, the critical crossing probability in the L' direction, with periodic boundary conditions in the L x L plane, was found to follow a universal exponential decay as a function of r = L'/L for large r. Simulations were also carried out to find new precise values of the critical thresholds for site percolation on the f.c.c. and b.c.c. lattices, yielding pc(f.c.c.)=0.1992365±0.0000010p_c(f.c.c.)= 0.199 236 5 \pm 0.000 001 0, pc(b.c.c.)=0.2459615±0.0000010p_c(b.c.c.)= 0.245 961 5\pm 0.000 001 0.Comment: 14 pages, 7 figures, LaTeX, submitted to J. Phys. A: Math. Gen, added references, corrected typo
    corecore