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Abstract

In this work, we present a new implicit numerical scheme for fractional subdiffusion equations. In

this approach we use the Keller Box method [1] to spatially discretise the fractional subdiffusion

equation and we use a modified L1 scheme (ML1), similar to the L1 scheme originally developed

by Oldham and Spanier [2], to approximate the fractional derivative. The stability of the proposed

method was investigated by using Von-Neumann stability analysis. We have proved the method is

unconditionally stable when 0 < λq < min( 1
µ0
, 2γ) and 0 < γ ≤ 1, and demonstrated the method is

also stable numerically in the case 1
µ0
< λq ≤ 2γ and log3 2 ≤ γ ≤ 1. The accuracy and convergence

of the scheme was also investigated and found to be of order O(∆t1+γ) in time and O(∆x2) in

space. To confirm the accuracy and stability of the proposed method we provide three examples

with one including a linear reaction term.

Keywords: Fractional subdiffusion equation, Keller Box method, Fractional calculus, L1 scheme,

Linear reaction.

1. Introduction

Anomalous subdiffusion is a physical phenomenon which observed in many systems which

involve trapping, binding or macromolecular crowding. In recent years, examples of anomalous

diffusion have been discovered in many different fields such as fluid mechanics [3, 4], physics [5,

6, 7, 8], engineering and biology [9, 10, 11, 12]. Anomalous subdiffusion can be modelled using

Continuous Time Random Walks (CTRWs), and using fractional partial differential equations
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(FPDEs) [7, 13]. One of the well-known FPDEs is the fractional subdiffusion equation [7]

∂u

∂t
= Kγ

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
. (1)

In Eq. (1), Kγ is the anomalous diffusion coefficient and γ is the anomalous diffusion exponent,

which in the case of the subdiffusion equation, lies in the interval 0 < γ < 1. What sets Eq. (1) apart

from the standard diffusion equation is the presence of the fractional derivative operator, ∂1−γ

∂t1−γ ,

which operates on the Laplacian term. In this article we use the Riemann–Liouville fractional

derivative [14] which is defined as

∂1−γg(t)

∂t1−γ
=

1

Γ(γ)

d

dt

∫ t

0

g(τ)

(t− τ)1−γ dτ, (2)

where Γ(.) is the Gamma function and 0 < γ ≤ 1.

Numerical techniques are required to find the approximate solution of FPDEs because the

closed form analytic solutions either do not exist or involve special functions, such as the Fox

(H-function) function [15] and the Mittag–Leffler function [14], which are difficult to evaluate. As

a consequence many researchers have developed numerical schemes to approximate the solution of

FPDEs such as the fractional subdiffusion equation in Eq. (1). The majority of these schemes can

be split into either explicit type methods [16, 17, 18, 19, 20, 21] or implicit numerical methods [22,

18, 23, 24, 25, 21, 26].

Langlands and Henry [22] considered an implicit method for the fractional subdiffusion equation

using the L1 approximation to estimate the fractional derivative. They discussed the accuracy

and stability for the numerical method and showed the method is stable and convergent of order

O(∆t1+γ) +O(∆x2). Stability of this method was later proven by Chen et al. [27] using an energy

2-norm approach.

More accurate numerical methods are available for the subdiffusion equation if it is rewritten in

the form
∂γu

∂tγ
= Kγ

∂2u

∂x2
, (3)

using a Caputo fractional derivative on the left hand side [28, 29, 30, 31]. The advantage of this

form is that there is only one temporal derivative to approximate instead of two as in the Eq. (1)

form. However, our method could be used for more general equations such as the fractional cable

equation [8]
∂u

∂t
=

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
− αu, (4)
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where we cannot rewrite the equation with the fractional derivative on the left hand side.

The Keller Box method is an implicit numerical scheme which is second order accurate in both

space and time for the standard diffusion equation [32]. The idea of the Keller Box method is

to replace the higher spatial derivatives in the equation by the first derivative of an introduced

additional variable. Al-Shibani [33] proposed a Keller Box method for the one dimensional time

fractional diffusion equation in Eq. (3) where the Grünwald–Letnikov approximation was applied

to approximate the fractional derivative.

In this article we develop an alternative numerical method based upon the Keller Box Method [1]

for the subdiffusion equation in Eq. (1) modified to include a source term f(x, t)

∂u

∂t
= Kγ

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ f(x, t) (5)

which we will solve on the finite spatial domain 0 ≤ x ≤ L and for times 0 ≤ t ≤ T subject to the

following the initial and boundary conditions

u(x, 0) = g(x), 0 < x < L, (6)

u(0, t) = ϕ1(t) and u(L, t) = ϕ2(t), 0 < t ≤ T . (7)

Let Ω = {(x, t)|0 ≤ x ≤ L, 0 ≤ t ≤ T} and then we define the function space

G(Ω) =

{
θ(x, t)

∣∣∣∣∂2θ(x, t)

∂x2
∈ C2(Ω), and

∂5θ(x, t)

∂x4∂t
∈ C(Ω)

}
. (8)

We suppose that the continuous problem Eqs. (5) – (7) has a smooth solution u(xi, tj) ∈ G(Ω).

This scheme extends the standard approach to the fractional case where the Riemann-Liouville

definition of the fractional derivative is used on the right side of the equation instead of Caputo

definition used by Al-Shibani [33]. In addition, we use a modification of the L1 scheme [2] to

approximate the fractional derivative instead of the Grünwald-Letnikov approximation used by

Al-Shibani [33]. In the next section we develop the modified scheme and in later sections we

investigate the stability and the accuracy of the implicit numerical method and give examples of

its implementation.

2. Derivation of the numerical method

In this section we develop an implicit numerical scheme using the Keller Box method to spatially

discretise Eq. (5) and a modification of the L1 scheme to approximate the Riemann–Liouville
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fractional derivative. For positive integers M and N , we define the spatial grid points, xi as

{xi| 0 = x1 < x2 < x3 < · · · < xN−1 < xN = L}, where we denote ∆xi = xi − xi−1 as the spatial

grid spacing. We also use equally spaced temporal points as tj = j∆t, j = 0, 1, . . . ,M with

∆t = T/M which denotes the time step size.

Following the Keller Box approach, we approximate Eq. (5) at the point xi− 1
2

and time tj+ 1
2

as

[
∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

= Kγ

[
∂1−γ

∂t1−γ

(
∂2u

∂x2

)∣∣∣∣j+
1
2

i− 1
2

+ f
(
xi− 1

2
, tj+ 1

2

)
, (9)

where uji is the numerical approximation of the exact solution U ji = u(xi, tj) at the discrete grid

point (xi, tj). We approximate the value of the fractional derivative at the time tj+ 1
2

in Eq. (9) by

using the ML1 scheme, developed in [34], which is given by[
d1−γg(t)

dt1−γ

∣∣∣∣j+
1
2

ML1

=
∆tγ−1

Γ(1 + γ)

{
βj(γ)g(0) + 2

(
1

2

)γ (
g(tj+ 1

2
)− g(tj)

)
+

j∑
k=1

µj−k(γ) (g(tk)− g(tk−1))

}
, (10)

with the weights

βj(γ) = γ

(
j +

1

2

)γ−1

and µj(γ) =

(
j +

3

2

)γ
−
(
j +

1

2

)γ
. (11)

The ML1 scheme is shown by Osman [34] to be convergent of order O(∆t1+γ) for function g(t) ∈

C2[0, tj+ 1
2
], which is a similar convergence order for the scheme given in [35]. The scheme in [35] is

similar to the ML1 scheme but uses different weights and involves the evaluation at the midpoints

tk+ 1
2
, where k = 0, 1, 2, . . . , j.

2.1. Keller Box method with the ML1 scheme

In this section, the numerical scheme for solving Eq. (5) will be developed using the idea of the

Keller Box method combined with the approximation of the fractional derivative in Eqs. (10) – (11).

First we define the first spatial derivative in Eq. (5) by[
∂u

∂x

∣∣∣∣j+1

i− 1
2

= vj+1

i− 1
2

. (12)
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Using Eqs. (10) and (12), Eq. (5) can be rewritten as[
∂u

∂t

∣∣∣∣j+ 1
2

i− 1
2

=
Kγ∆tγ−1

Γ(1 + γ)

{
βj(γ)

[
∂v

∂x

∣∣∣∣0
i− 1

2

+ 2

(
1

2

)γ ([∂v
∂x

∣∣∣∣j+ 1
2

i− 1
2

−
[
∂v

∂x

∣∣∣∣j
i− 1

2

)

+

j∑
k=1

µj−k(γ)

([
∂v

∂x

∣∣∣∣k
i− 1

2

−
[
∂v

∂x

∣∣∣∣k−1

i− 1
2

)}
+ f

(
xi− 1

2
, tj+ 1

2

)
. (13)

Following the Keller Box method [32, 36] we next approximate the first order spatial and temporal

derivatives in Eqs. (12) and (13) using centred finite difference approximations, to find

uj+1
i − uj+1

i−1

∆xi
= vj+1

i− 1
2

, (14)

and

uj+1

i− 1
2

− uj
i− 1

2

∆t
=
Kγ∆tγ−1

Γ(1 + γ)

βj(γ)

(
v0
i − v0

i−1

∆xi

)
+ 2

(
1

2

)γvj+ 1
2

i − vj+
1
2

i−1

∆xi


−2

(
1

2

)γ (vji − vji−1

∆xi

)
+

j∑
k=1

µj−k(γ)

(
vki − vki−1

∆xi
−
vk−1
i − vk−1

i−1

∆xi

)}
+ [f |j+

1
2

i− 1
2

. (15)

Now replacing the v
j+ 1

2
i , and vj

i− 1
2

terms by their corresponding temporal and spatial averages,

gives the equations

uj+1
i − uj+1

i−1

∆xi
=
vj+1
i + vj+1

i−1

2
, (16)

and

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+
Kγ∆tγ−1

Γ(1 + γ)

{
βj(γ)

∆xi

(
v0
i − v0

i−1

)
+

(
1
2

)γ
∆xi

(
vj+1
i − vj+1

i−1

)
−
(

1
2

)γ
∆xi

(
vji − v

j
i−1

)
+

1

∆xi

j∑
k=1

µj−k(γ)
[
vki − vki−1 −

(
vk−1
i − vk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

. (17)

Solving Eq. (16) to find vji−1 and combining with Eq. (17) gives the equation for uji and vji

uj+1
i + uj+1

i−1

2∆t
=
uji + uji−1

2∆t
+

2Kγ∆tγ−1

Γ(1 + γ)

{
βj(γ)

∆xi
v0
i −

βj(γ)

(∆xi)2

(
u0
i − u0

i−1

)
−
(

1
2

)γ
(∆xi)2

(
uj+1
i − uj+1

i−1

)
+

(
1
2

)γ
∆xi

vj+1
i +

(
1
2

)γ
(∆xi)2

(
uji − u

j
i−1

)
−
(

1
2

)γ
∆xi

vji +
1

∆xi

j∑
k=1

µj−k(γ)
(
vki − vk−1

i

)

− 1

(∆xi)2

j∑
k=1

µj−k(γ)
[
uki − uki−1 −

(
uk−1
i − uk−1

i−1

)]}
+ [f |j+

1
2

i− 1
2

. (18)
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In a similar manner, by replacing i by i+ 1 in Eqs. (16) and (17), and the eliminating vji+1 we then

have a second equation

uj+1
i+1 + uj+1

i

2∆t
=
uji+1 + uji

2∆t
+

2Kγ∆tγ−1

Γ(1 + γ)

{
βj(γ)

(∆xi+1)2

(
u0
i+1 − u0

i

)
− βj(γ)

∆xi+1
v0
i +

(
1
2

)γ
(∆xi+1)2

(
uj+1
i+1 − u

j+1
i

)
−
(

1
2

)γ
∆xi+1

vj+1
i −

(
1
2

)γ
(∆xi+1)2

(
uji+1 − u

j
i

)
+

(
1
2

)γ
∆xi+1

vji −
1

∆xi+1

j∑
k=1

µj−k(γ)
(
vki − vk−1

i

)

+
1

(∆xi+1)2

j∑
k=1

µj−k(γ)
[
uki+1 − uki −

(
uk−1
i+1 − u

k−1
i

)]}
+ [f |j+

1
2

i+ 1
2

. (19)

Combining Eqs. (18) and (19) gives an equation for uj+1
i alone

1

2∆t

(
∆xi+1u

j+1
i+1 + (∆xi+1 + ∆xi)u

j+1
i + ∆xiu

j+1
i−1

)
(20)

− 2Kγ∆tγ−1

∆xi+1∆xiΓ(1 + γ)

(
1

2

)γ (
∆xiu

j+1
i+1 + (∆xi + ∆xi+1)uj+1

i + ∆xi+1u
j+1
i−1

)
=

1

2∆t

(
∆xi+1u

j
i+1 + (∆xi+1 + ∆xi)u

j
i + ∆xiu

j
i−1

)
− 2Kγ∆tγ−1

∆xi+1∆xiΓ(1 + γ)

(
1

2

)γ [
∆xiu

j
i+1 + (∆xi + ∆xi+1)uji + ∆xi+1u

j
i−1

]
+

2Kγ∆tγ−1

∆xi+1∆xiΓ(1 + γ)

{
βj(γ)

[
∆xi

(
u0
i+1 − u0

i

)
−∆xi+1

(
u0
i − u0

i−1

)]
−∆xi+1

j∑
k=1

µj−k(γ)
[(
uki − uki−1

)
−
(
uk−1
i − uk−1

i−1

)]
+ ∆xi

j∑
k=1

µj−k(γ)
[(
uki+1 − uki

)
−
(
uk−1
i+1 − u

k−1
i

)]}
+∆xi [f |j+

1
2

i− 1
2

+ ∆xi+1 [f |j+
1
2

i+ 1
2

.

In the case of constant grid spacing ∆xi = ∆x, Eq. (20) simplifies to(
uj+1
i+1 + 2uj+1

i + uj+1
i−1

)
−
(

1

2

)γ
d
(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

)
(21)

=
(
uji+1 + 2uji + uji−1

)
−
(

1

2

)γ
d
(
uji+1 − 2uji + uji−1

)
+ dβj(γ)

(
u0
i+1 − 2u0

i + u0
i−1

)
+ d

j∑
k=1

µj−k(γ)
[
uki+1 − 2uki + uki−1 −

(
uk−1
i+1 − 2uk−1

i + uk−1
i−1

)]
+ 2∆t

(
[f |j+

1
2

i− 1
2

+ [f |j+
1
2

i+ 1
2

)
,

where

d =
4Kγ∆tγ

∆x2Γ(1 + γ)
. (22)

We refer to this scheme as the KBML1 method. If we set γ = 1, noting βj(1) = 1 and µj−k(1) = 1,

Eq. (21) reduces to the Keller Box method [32] for diffusion equation in the case of a nonzero

source term.
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3. The accuracy of the numerical method

In this section we consider the accuracy of the KBML1 scheme given by Eq. (21). Suppose that

U ji = u(xi, tj) ∈ G(Ω), where i = 1, . . . , N and j = 1, . . . ,M , be the exact solution of the problem

Eqs. (5) – (7) at the point (xi, tj). To begin we rewrite Eq. (21) as

1

∆t

[
U j+1
i − U ji

]
= Kγ

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

+

(
1

2

)γ Kγ∆tγ−1

Γ(1 + γ)

[
δ2
xU

j+1
i + δ2

xU
j
i − 2δ2

xU
j+ 1

2
i

]
+Kγ

[
∂1−γ

∂t1−γ
δ2
xU

∣∣∣∣j+
1
2

ML1,i

−Kγ

[
∂1−γ

∂t1−γ
∂2U

∂x2

∣∣∣∣j+
1
2

i

− ∆x2

4∆t

[
δ2
xU

j+1
i − δ2

xU
j
i

]
+

1

2

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
,

(23)

where f ji = f(xi, tj) is the numerical approximation of the source term and

δ2
xU

j
i =

U ji+1 − 2U ji + U ji−1

∆x2
. (24)

Taking the Taylor series expansion around the point (xi, tj+ 1
2
), Eq. (23) becomes[

∂U

∂t

∣∣∣∣j+ 1
2

i

= Kγ

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

+ f(xi, tj+ 1
2
) +O(∆t2) +O(∆x2)

+Kγ

[[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

ML1,i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

]
(25)

where we note the term [
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

ML1,i

−
[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

(26)

is O(∆t1+γ) as given in [34]. We then obtain[
∂U

∂t

∣∣∣∣j+ 1
2

i

= Kγ

[
∂1−γ

∂t1−γ

(
∂2U

∂x2

)∣∣∣∣j+
1
2

i

+ f(xi, tj+ 1
2
) +Rj+1

i (27)

where the truncation error is

Rj+1
i = O(∆t1+γ + ∆x2) , (28)

for i = 1, 2, . . . , N and j = 1, 2, . . . ,M . Since i, j are finite, then there is a positive constant c1 for

all i, j such that

|Rj+1
i | ≤ c1(∆t1+γ + ∆x2). (29)

We then find the truncation error is of order 1+γ in time and second order in space. The numerical

approximation for the fractional diffusion equation is consistent, since the truncation approaches

zero as ∆t→ 0 and ∆x→ 0.
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4. Stability analysis of the numerical method

In this section we investigate the local stability of the KBML1 numerical scheme in Eq. (21)

using Von Neumann stability analysis. Now we let the error

Eji = U ji − u
j
i (30)

where i = 1, 2, . . . , N and j = 0, 1, 2, . . . ,M and so the error satisfies Eq. (21). To investigate the

stability by Von Neumann stability analysis, we let

Eji = ξje
i′qi∆x, (31)

where q = 2πl/L is a real spatial wave number and i′ is the imaginary number, i′ =
√
−1. From

Eq. (21) we have

∆x2δ2
xU

j+1
i + 4U j+1

i = ∆x2δ2
xU

j
i + 4U ji + 2∆t

[
f
j+ 1

2

i− 1
2

+ f
j+ 1

2

i+ 1
2

]
(32)

+
4D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xU
0
i +

(
1

2

)γ (
δ2
xU

j+1
i − δ2

xU
j
i

)
+

j∑
k=1

µj−k(γ)
[
δ2
xU

k
i − δ2

xU
k−1
i

]}
.

Subtracting Eq. (21) from Eq. (32), gives

∆x2δ2
xE

j+1
i + 4Ej+1

i = ∆x2δ2
xE

j
i + 4Eji (33)

+
4D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xE
0
i +

(
1

2

)γ (
δ2
xE

j+1
i − δ2

xE
j
i

)
+

j∑
k=1

µj−k(γ)
[
δ2
xE

k
i − δ2

xE
k−1
i

]}
.

Using Eq. (31) in (33), we then obtain the recurrence relation

ξj+1 = ξj − λq

{
βj(γ)ξ0 +

j∑
k=1

µj−k(γ) [ξk − ξk−1]

}
, (34)

with

λq =
Vqd

1− Vq + Vq
(

1
2

)γ
d
, where Vq = sin2

(
q∆x

2

)
. (35)

For j ≥ 1, Eq. (34) becomes

ξj+1 = [1− λqµ0(γ)] ξj − λq

{
αj(γ)ξ0 +

j−1∑
k=1

ωj−k(γ)ξk

}
(36)
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with the weights

αj(γ) = βj(γ)− µj−1, and ωj(γ) = µj − µj−1 (37)

where βj(γ) and µj are as defined earlier in Eq. (11). We now consider three lemmas which will

aid in showing the stability and convergence of our numerical method.

Lemma 4.1. Given 0 < γ ≤ 1 and 0 ≤ Vqd < ∞ then the parameter λq given in Eq (35) is

bounded by 0 ≤ λq ≤ 2γ .

Proof. From Eq. (35), the term λq can be rewritten as

λq =
1

1−Vq
Vqd

+
(

1
2

)γ . (38)

For 0 < Vq ≤ 1 and 0 < Vqd <∞, we then have 0 <
1−Vq
Vqd

<∞. Consequently, we have the bound

0 ≤ λq ≤ 2γ .

Lemma 4.2. (adapted from [37]) Let aj =
(
j + 1

2

)γ − (j − 1
2

)γ
, where j ≥ 1 and 0 < γ < 1 then

aj > 0 and aj > aj+1.

Proof. Let f1(y) =
(
y − 1

2

)γ
and f2(y) =

(
y + 1

2

)γ − (y − 1
2

)γ
. For y > 0 it can be seen that f1(y)

is a monotonically increasing function of y and f2(y) is a monotonically decreasing function of y.

Thus aj > 0 and aj > aj+1.

Lemma 4.3. The coefficients αj(γ) and ωj(γ) defined in Eq. (37) for j ≥ 1 satisfy αj(γ) < 0 and

ωj(γ) < 0.

Proof. First we apply the binomial expansion to
(
j − 1

2

)γ
, then αj(γ) becomes

αj(γ) =
∞∑
n=2

 γ

n

 (−1)n
(
j +

1

2

)γ−n
. (39)

After using the result in Appendix A, we then find

αj(γ) =
∞∑
n=2

γΓ(n− γ)

n!Γ(1− γ)
(−1)2n−1

(
j +

1

2

)γ−n
= −

∞∑
n=2

γΓ(n− γ)

n!Γ(1− γ)

(
j +

1

2

)γ−n
< 0 (40)

since n ≥ 2 and 0 < γ ≤ 1, the term γΓ(n−γ)
(n)!Γ(1−γ) > 0, and the Gamma function is positive for positive

arguments. By result (2) of Lemma 4.2 ωj(γ) = aj+1 − aj < aj − aj < 0 then ωj(γ) < 0. Hence

results (1) and (2) hold for 0 < γ < 1.
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Proposition 4.4. Let ξj , where j = 1, 2, ...,M be the solution of Eq. (34), then we have

| ξj |<| ξ0 | (41)

if 0 ≤ λq ≤ min
(

2γ , 1
µ0

)
and 0 < γ < 1.

Proof. We use mathematical induction method to prove Eq. (41). For simplicity we assume ξ0 > 0.

The case ξ0 < 0 can be handled in analogous manner to the method below. For the case j = 0 in

Eq. (34), we have

ξ1 =

(
1− λqγ

(
1

2

)γ−1
)
ξ0. (42)

We note −1 < 1− λqγ
(

1
2

)γ−1
< 1 since 0 ≤ λq ≤ 2γ < 2γ/γ, then for 0 < γ < 1 we have

− ξ0 < ξ1 < ξ0, or | ξ1 | < | ξ0 | (43)

and so Eq. (41) is true for j = 0. We now assume, for some k ∈ IN, that

−ξ0 < ξn < ξ0, for n = 1, 2, . . . , k (44)

and then we need to show that

−ξ0 < ξk+1 < ξ0. (45)

From Eq. (36) we have

ξk+1 = [1− λqµ0] ξk − λq

{
αk(γ)ξ0 +

k−1∑
l=1

ωk−l(γ)ξl

}
. (46)

Note by using Lemma 4.3, we have −ωj−k(γ) ≥ 0 and −αk(γ) ≥ 0. We then consider cases, given

0 < γ < 1 and 0 ≤ λq ≤ 2γ . The two cases depend upon the sign of the first term in Eq. (46).

The first case occurs if (1− λqµ0) > 0, we have using Eqs. (44) and (46)

ξk+1 ≤

(
1− λqµ0 + λq (−αk(γ)) + λq

k−1∑
l=1

(−ωk−l(γ))

)
ξ0. (47)

Evaluating the summation and using Eq. (37), we find

ξk+1 ≤

(
1− λqγ(

k + 1
2

)1−γ
)
ξ0 ≤ ξ0. (48)

10



Likewise it can be shown ξk+1 ≥ −ξ0, and so

−ξ0 ≤ ξk+1 ≤ ξ0 or |ξk+1| ≤ |ξ0|. (49)

Hence if 0 ≤ λq ≤ 2γ and (1− λqµ0) > 0 then Eq. (41) is satisfied for all k ∈ IN. Hence the

numerical method is stable if 0 < λq < 2γ and 1− λqµ0 > 0.

The second case occurs if (1− λqµ0) < 0 and using a similar approach we have

−ρ(γ, k, λq)ξ0 ≤ ξk+1 ≤ ρ(γ, k, λq)ξ0 (50)

where

ρ(γ, k, λq) = 2λqµ0 − 1− λqγ
(
k +

1

2

)γ−1

. (51)

Unlike the first case, the value of ρ(γ, k, λq) is not bounded by 1 for all values of λq, k and γ. As

a result we cannot conclude from this analysis that the method is stable. However these bounds

found are only estimates of the lower and upper bounds on the actual values of ξk and the actual

values of ξk may be indeed still satisfy Proposition 4.4. In the next section we demonstrate the

method is stable by evaluating the solution of the recurrence relationship in Eq. (46) numerically.

Note if γ = 1 the solution of Eq. (46) is

ξk = (1− λq)kξ0 , (52)

which is bounded if 0 ≤ λq ≤ 2 for both cases. Langlands and Henry [22] found the same equation

as Eq. (52) in the standard diffusion case (γ = 1). However in their case they found that the

solution did not oscillate since their value of the parameter λq only had a range from 0 to 1.

4.1. Numerical solution of the recurrence relationship

In this section we investigate the solution of the recurrence relationship in Eq. (46) by numerical

evaluation for both cases. For the second case the value of the fractional exponent γ lies in the

range log3 2 ≤ γ ≤ 1 where γ = log3 2 is the γ value at the intersection of λq = 2γ and λq = 1/µ0

curves. These results are shown in Fig. 1 for (a) λq = 1/µ0 and (b) λq = 2γ , for j = 0, . . . , 5 for

varying γ. We see from Fig. 1(a) that the value of ξj/ξ0 decays quickly to zero but does undergo

some initial oscillation. Meanwhile in Fig. 1(b) we see the values of ξj/ξ0 also oscillates but decays

to zero more slowly if 0 < γ < 1. We see similar behavior when we choose λq = 2log3 2 as shown in

11



Fig. 2(a). Note that in the case of γ = 1, we have the solution ξj/ξ0 = (1− λq)j which for λq = 2

will oscillate between −1 and 1 as shown in Fig. 1(b) by the red dashed line. Whilst for γ = 0 the

solution is ξj/ξ0 = 1 as shown in Fig. 2(b) by the blue dashed line.

We also show results for the first case when λq = 1 and for various values of the fractional

exponent γ in the range 0 < γ ≤ 1 in Fig. 2(b). We see the solution decays to zero but does not

oscillate as in the second case. We note in Proposition 4.4 the difficulty we had in proving the

stability for the second case is due to the oscillation. The oscillations do not occur for the first

case and so we did not have the same issue. The results in Figs. 1 and 2 demonstrate this method

is locally stable for both cases as the values of ξj/ξ0 does not grow but instead remains bounded

between −1 and 1.

(a) (b)

Figure 1: In the second case, the predictions from Eq. (46) with ξ0 = 1 for various γ is shown (a) for λq = 1
µ0

and

(b) for λq = 2γ , for j = 1, . . . , 5 and log3 2 ≤ γ ≤ 1. The ratios ξj/ξ0 are bounded above by 1 and below by −1 and

decay to zero for 0 < γ < 1. Arrows show the direction of increasing γ.
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(a) (b)

Figure 2: The predictions from Eq. (46) with ζ0 = 1 for various γ is shown for (a) the second case with λq = 2log3 2,

j=1,. . . , 4 and log3 2 ≤ γ ≤ 1, and for (b) the first case with λq = 1, j = 1, . . . , 100 and 0 < γ ≤ 1. The magnitude

of the ratios remains less than 1 for 0 < γ < 1. Arrows show the direction of increasing γ.

5. Convergence of the numerical method

In this section the convergence of the numerical methods given by Equations (21) is considered.

We follow the approach as in [38], we define the following grid functions

Ej(x) =


Eji if x ∈

(
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . , N

0 if x ∈
[
0, ∆x

2

]⋃ (
L− ∆x

2 , L
]
,

(53)

and

Rj(x) =


Rji if x ∈

(
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . , N

0 if x ∈
[
0, ∆x

2

]⋃ (
L− ∆x

2 , L
] (54)

where i = 1, 2, . . . , N . Then expanding Eji and Rji in Fourier series we have

Ej(x) =
∞∑

l=−∞
ξj(l)e

i′2πlx/L, and Rj(x) =
∞∑

l=−∞
ηj(l)e

i′2πlx/L, for j = 0, 1, 2, . . . ,M, (55)

where

ξj(l) =
1

L

∫ L

0
Ej(x)e−i

′2πlx/Ldx, and ηj(l) =
1

L

∫ L

0
Rj(x)e−i

′2πlx/Ldx. (56)
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Next we applied the Parseval identity [39, 40], we then have

‖Ej‖2 =

(
N−1∑
i=1

∆x|Eji |
2

) 1
2

=

( ∞∑
l=−∞

|ξj(l)|2
) 1

2

, j = 0, 1, 2, . . . ,M (57)

and

‖Rj‖2 =

(
N−1∑
i=1

∆x|Rji |
2

) 1
2

=

( ∞∑
l=−∞

|ηj(l)|2
) 1

2

, j = 0, 1, 2, . . . ,M. (58)

Now we assume that

Rji = ηje
i′qi∆x, (59)

where q = 2πl/L is a real spatial wave number and i′ is the imaginary number, i′ =
√
−1.

From Eq. (30) we note that E0 = 0, which satisfies the equation

ξ0 = ξ0(l) = 0. (60)

By the convergence of the series on the right hand side (58) there is a positive constant cj such

that

|ηj | ≡ |ηj(l)| ≤ cj |η1| ≡ cj |η1(l)|, j = 1, 2, . . . ,M. (61)

We then obtain

|ηj | ≤ c|η1(l)|, j = 1, 2, . . . ,M, (62)

where c = max1≤j≤M{cj}.

We will discuss the convergence of the KBML1 scheme, similar to Eq. (33) we have

∆x2δ2
xE

j+1
i + 4Ej+1

i = ∆x2δ2
xE

j
i + 4Eji + 4∆tRj+1

i (63)

+
4D∆tγ

Γ(1 + γ)

{
βj(γ)δ2

xE
0
i +

(
1

2

)γ (
δ2
xE

j+1
i − δ2

xE
j
i

)
+

j∑
k=1

µj−k(γ)
[
δ2
xE

k
i − δ2

xE
k−1
i

]}
.

Using Eq. (59) in (63), we then obtain the recurrence relation

ξj+1 = ξj − λq

{
βj(γ)ξ0 +

j∑
k=1

µj−k(γ) [ξk − ξk−1]

}
+

∆tηj+1

1− Vq + Vq
(

1
2

)γ
d
, (64)
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where λq and Vq are given in Eq. (35), and d is as defined in Eq. (22). When j ≥ 1, Eq. (64) can

be rewritten as

ξj+1 = [1− λqµ0(γ)] ξj − λq

{
αj(γ)ξ0 +

j−1∑
k=1

ωj−k(γ)ξk

}
+

∆tηj+1

1− Vq + dVq
(

1
2

)γ (65)

where the weights αj(γ) and ωj(γ) are given in Eq. (37).

Proposition 5.1. Let ξj be the solution of Eq. (64). Then there exists a positive constant c2 such

that

|ξj | ≤ c2j∆t|η1|, j = 1, 2, . . . ,M, (66)

if 0 ≤ λq ≤ min(1/µ0(γ), 2γ) and 0 < γ ≤ 1.

Proof. From Eqs. (29) and (58), we obtain

‖Rj‖2 ≤ c2

√
N∆x(∆t1+γ + ∆x2) = c2

√
L(∆t1+γ + ∆x2), (67)

where j = 1, 2, . . . ,M . We use mathematical induction to prove the relation in Eq. (66). We first

consider the case j = 0, from Eq. (64) and using Eq. (60), we have

ξ1 =
∆t

1− Vq + Vqd
(

1
2

)γ η1 (68)

since 0 ≤ Vq ≤ 1 and d > 0, we obtain

|ξ1| ≤
∆t

1− Vq + Vqd
(

1
2

)γ |η1| ≤ ∆t|η1| ≤ c2∆t|η1|. (69)

Suppose that

|ξn| ≤ c2n∆t|η1|, n = 1, 2, . . . , k. (70)

For 0 < γ < 1 and dVq > 0, from Eq. (65), we have

|ξk+1| ≤ |1− λqµ0(γ)| |ξk|+ λq |−αk(γ)| |ξ0|+ λq

k−1∑
l=1

|−ωk−l(γ)| |ξl|+

∣∣∣∣∣ ∆tηk+1

1− Vq + Vqd
(

1
2

)γ
∣∣∣∣∣ . (71)

Now using Eqs. (60) and (70) in Eq. (71), gives

|ξk+1| ≤ c2∆t

{
|1− λqµ0(γ)| k + λq

k−1∑
l=1

l |−ωk−l(γ)|+

∣∣∣∣∣ 1

1− Vq + Vq
(

1
2

)γ
d

∣∣∣∣∣
}
|η1| . (72)
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The sign of the first term (1− λqµ0(γ)) may be positive or negative. Also for 0 < γ < 1 and

Vqd > 0, we note

0 ≤ 1

1− Vq + Vq
(

1
2

)γ
d
≤ 1. (73)

By Lemma 4.3 the weights ωj(γ) are negative then −ωj(γ) > 0, we then evaluate the summation

in Eq. (72) by

k−1∑
l=1

l (−ωk−l(γ)) = kµ0(γ)−
(
k +

1

2

)γ
+

(
1

2

)γ
. (74)

We need to consider two cases.

Case 1 occurs if the first term satisfies (1− λqµ0(γ)) ≥ 0. Using Eq. (74) in Eq. (72), we then

have

|ξk+1| ≤ c2∆t

[
k +

1

1− Vq + Vqd
(

1
2

)γ
]
|η1| − c2∆tλq

[(
k +

1

2

)γ
−
(

1

2

)γ]
|η1|. (75)

Since for 0 < γ ≤ 1 we have
(
k + 1

2

)γ − (1
2

)γ
> 0, and by using Eq. (73), we then conclude that

|ξk+1| ≤ c2∆t(k + 1)|η1|, (76)

and hence Eq. (66) is satisfied. Therefore if 0 ≤ λq ≤ 2γ and 1 − λqµ0(γ) ≥ 0 then Eq. (66) is

satisfied for all j ≥ 0. The proof of the proposition is completed for Case 1.

Case 2 occurs if the first term satisfies 1− λqµ0(γ) ≤ 0. From Lemma 4.1 we have 0 ≤ λq ≤ 2γ

and 0 < γ < 1, then using Eq. (74) in Eq. (72), we have

|ξk+1| ≤ c2∆t

{
[λqµ0(γ)− 1] k + λq

[
kµ0(γ)−

(
k +

1

2

)γ
+

(
1

2

)γ]
+

1

1− Vq + Vqd
(

1
2

)γ
}
|η1|

≤ c2∆t(2γ+1µ0(γ)k + 1)|η1|, (77)

since the term 0 < 2γ+1µ0(γ) ≤ 4. We then conclude that for n = k + 1

|ξk+1| ≤ 4c2∆t(k + 1)|η1|, (78)

but this does not satisfy the assumption in Eq. (70) and so convergence in this case cannot be

confirmed.

Theorem 5.2. Let u(x, t) ∈ U(Ω) be the exact solution for the fractional subdiffusion equation.

Then the numerical scheme given by Equations (21) is convergent with order O(∆t1+γ) +O(∆x2)

if λq = min(1/µ0(γ), 2γ).
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Proof. Using Eqs. (57) and (58) with Eq. (29) and Proposition 5.1, for j∆t ≤ T , we then obtain

‖Ej‖2 ≤ c2∆tk‖R1‖ ≤ c1c2j∆t
√
L(∆t1+γ + ∆x2) ≤ C(∆t1+γ + ∆x2) (79)

where C = c1c2T
√
L.

6. Numerical examples

In this section we provide three examples of the implementation our Keller Box scheme on

problems where the analytic solution is known. For each example we compare graphically the

numerical predictions against the exact solution. We also verify the accuracy of the implicit scheme

by computing the maximum norm of the error between the numerical estimate uMi and the exact

solution u(xi, tM ) using the infinity norm

e∞(∆t,∆x) = max
1≤i≤N

| uMi − u(xi, tM ) | . (80)

Numerical accuracy is tested for varying time and spatial steps, and for four different fractional

exponents γ = 0.1, 0.5, 0.9, and 1. The approximate order of convergence in ∆x, R1, was estimated

by computing

R1 = log2 [e∞(∆t, 2∆x)/e∞(∆t,∆x)] , (81)

and the approximate order of convergence in ∆t, R2, was estimated by computing

R2 = log2 [e∞(2∆t,∆x)/e∞(∆t,∆x)] . (82)

Example 6.1. Consider the following fractional subdiffusion equation with a source term

∂u

∂t
= Kγ

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ sin(πx)

[
(2 + γ)t1+γ + π2

(
tγ−1

Γ(γ)
+

Γ(3 + γ)t1+2γ

Γ(2 + 2γ)

)]
, (83)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = sin(πx), u(0, t) = 0, u(1, t) = 0 . (84)

The exact solution of Eq. (83) given the conditions Eq. (84) is

u(x, t) =
(
1 + t2+γ

)
sin(πx). (85)

In Tables 1 and 2, we give the error and order of convergence estimates for this example. To

estimate the convergence in space we kept ∆t fixed at 10−3 whilst varying ∆x. To estimate the
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convergence in time we kept ∆x fixed at 10−3 whilst varying ∆t. From the results shown in

Tables 1 and 2, by using KBML1 for Eq. (83), it can be seen that, the KBML1 scheme appears to

be of order O(∆x2), and O(∆t1+γ).

Table 1: Numerical accuracy in ∆x applied to Eq. (83) with ∆t = 10−3 and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 1.65e–01 – 1.99e–01 – 1.75e–01 – 1.66e–01 –

1/4 3.21e–02 2.36 3.82e–02 2.38 3.17e–02 2.46 2.93e–02 2.50

1/8 7.54e–03 2.09 8.91e–03 2.10 7.26e–03 2.12 6.67e–03 2.13

1/16 1.88e–03 2.01 2.19e–03 2.02 1.78e–03 2.03 1.63e–03 2.03

1/32 4.89e–04 1.94 5.51e–04 1.99 4.43e–04 2.01 4.05e–04 2.01

Table 2: Numerical accuracy in ∆t applied to Eq. (83) with ∆x = 10−3 and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 5.48e–03 – 9.26e–03 – 7.27e–03 – 6.99e–03 –

1/20 2.40e–03 1.19 3.00e–03 1.63 1.87e–03 1.96 1.75e–03 2.00

1/40 1.07e–03 1.16 9.90e–04 1.60 4.83e–04 1.96 4.38e–04 2.00

1/80 4.88e–04 1.14 3.32e–04 1.58 1.25e–04 1.95 1.10e–04 2.00

1/160 2.25e–04 1.12 1.13e–04 1.55 3.30e–05 1.94 2.80e–05 1.98

A comparison of the exact and numerical solution of Eq. (83), at the point x = 0.5 and for

0 < t ≤ 1 for the fractional exponents γ = 0.1, 0.5, and 0.9 with ∆t = 10−3, is shown in Fig. 3.

We also show in Fig. 4 the comparison of the exact solution (shown as solid red lines) with the

numerical solution (shown as blue dots), at the times t = 0.25, 0.50, 0.75, and 1.00 for γ = 0.1

and 0.9. It can be seen that from both Figs. 3 and 4, for 0 ≤ λq ≤ 1, the approximate solution

obtained from the KBML1 scheme, is in good agreement with the exact solution.

18



Figure 3: (Color online) A comparison of the exact solution (solid red lines) and the numerical solution (blue dots)

for Eq. (83) at the point x = 0.5 and time 0 ≤ t ≤ 1, for γ = 0.1, 0.5, and 0.9 with ∆t = 10−3. Note γ increases in

the direction of arrow. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

(a) (b)

Figure 4: (Color online) A comparison of the exact solution (solid red lines) and the numerical solution (blue dots)

for Eq. (83) for (a) γ = 0.1 and (b) γ = 0.9 at the times t = 0.25, 0.50, 0.75, and 1.0 with ∆t = 10−3. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We also investigate the stability in the case 1 < λq < 2γ where the analysis was inconclusive. By

calculating the relative error in the numerical solution, we can demonstrate the numerical solution

is stable if the error decays with time. In Figs. 5 and 6 we show the relative error for the exponent

values γ = 0.6, 0.7, 0.8, and 0.9 at the time t = 5 using increasingly larger time steps ∆t = 0.25,

0.3125, 0.5, and 1. In Fig. 5, for γ = 0.6 and γ = 0.7, we have estimated the ranges of λq as

1.15 ≤ λq ≤ 1.41 and 1.17 ≤ λq ≤ 1.51 respectively. Likewise in Fig. 6 we have 1.16 ≤ λq ≤ 1.61

for γ = 0.8 and 1.14 ≤ λq ≤ 1.73 for γ = 0.9. We see the relative errors do indeed decay with time.
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This indicates the solution is stable despite the large time steps chosen.

(a) (b)

Figure 5: (Color online) The relative error for the numerical solution Eq. (83) for (a) γ = 0.6 with 1.15 ≤ λq ≤ 1.41

and (b) γ = 0.7 with 1.17 ≤ λq ≤ 1.51 at time t = 5 and ∆t = 0.25, 0.3125, 0.5, 1.

(a) (b)

Figure 6: (Color online) The relative error for the numerical solution Eq. (83) for (a) γ = 0.8 with 1.16 ≤ λq ≤ 1.61

and (b) γ = 0.9 with 1.14 ≤ λq ≤ 1.73 at the time t = 5 with ∆t = 0.25, 0.3125, 0.5, 1.

Example 6.2. Consider the following fractional Subdiffusion equation with the source term

∂u

∂t
= Kγ

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
+ (2 + γ)ext1+γ

[
1− Γ(2 + γ)tγ

Γ(2 + 2γ)

]
, (86)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = 0, u(0, t) = t2+γ , u(1, t) = et2+γ . (87)

The exact solution of Eqs. (86) and (87) is

u(x, t) = ext2+γ . (88)
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Error and order of convergence estimates for this example is shown in Tables 3 and 4. Similar to

the previous example we estimate the convergence in space and time. We see the truncation order

of the KBML1 scheme is of order O(∆x2) and O(∆t1+γ).

Table 3: Numerical accuracy in ∆x applied to Eq. (86) with ∆t = 10−3 and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/2 8.87e–03 – 1.21e–02 – 1.76e–02 – 1.95e–02 –

1/4 2.13e–03 2.06 2.87e–03 2.08 4.10e–03 2.11 4.52e–03 2.11

1/8 5.23e–04 2.03 7.07e–04 2.02 1.01e–03 2.02 1.11e–03 2.03

1/16 1.27e–04 2.05 1.76e–04 2.00 2.53e–04 1.99 2.79e–04 1.99

1/32 2.70e–05 2.23 4.30e–05 2.04 6.30e–05 2.00 7.00 e–05 2.00

Table 4: Numerical accuracy in ∆t applied to Eq. (86) with ∆x = 10−3 and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 1.08e–03 – 1.67e–03 – 1.03e–03 – 8.96e–04 –

1/20 4.86e–04 1.16 5.61e–04 1.57 2.69e–04 1.94 2.24e–04 2.00

1/40 2.21e–04 1.14 1.91e–04 1.56 7.00e–05 1.94 5.60e–05 2.00

1/80 1.02e–04 1.12 6.50e–05 1.54 1.80e–05 1.94 1.40e–05 2.01

1/160 4.70e–05 1.11 2.30e–05 1.53 5.00e–06 1.95 3.00e–06 2.02

A comparison of the exact and numerical solution of Eq. (86) at the point x = 0.5, 0 ≤ t ≤ 1,

for γ = 0.1, 0.5, and 0.9 with ∆t = 10−3, is shown in Fig. 7. In Fig. 8 we also show the comparison

of the exact solution (shown as solid red lines) with the numerical solution (shown as blue dots)

at the times t = 0.25, 0.5, 0.75, and 1.00, and fractional exponents γ = 0.1 and 0.9. Again from

both Figs. 7 and 8, for 0 ≤ λq ≤ 1, we see the numerical estimates is in agreement with the exact

solution.
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Figure 7: (Color online) A comparison of the exact solution (solid red lines) and the numerical solution (blue dots)

for Eq. (86) at the point x = 0.5 and time 0 ≤ t ≤ 1, for γ = 0.1, 0.5, and 0.9 with ∆t = 10−3. Note γ increases in

the direction of arrow. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

(a) (b)

Figure 8: (Color online) A comparison of the exact solution (solid red lines) and the numerical solution (blue dots)

for Eq. (86) for (a) γ = 0.1 and (b) γ = 0.9 at the times t = 0.25, 0.50, 0.75, and 1.0 with ∆t = 10−3. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In Figs. 9 and 10 we show again the relative error for the case 1 < λq < 2γ at time t = 5

and ∆t = 1, 0.5, 0.3125, 0.25. The estimated range of λq are 1.15 ≤ λq ≤ 1.41 for γ = 0.6,

1.17 ≤ λq ≤ 1.51 for γ = 0.7, 1.16 ≤ λq ≤ 1.61 for γ = 0.8 and 1.14 ≤ λq ≤ 1.73 for γ = 0.9.

It is noted the relative errors for γ = 0.9 are largest initially for the case ∆t = 0.25 compared to

the other cases of γ. Again we see the relative errors decrease as time increases, and hence the

numerical solution is stable.
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(a) (b)

Figure 9: (Color online) The relative error for the numerical solution Eq. (86), for (a) γ = 0.6 with 1.15 ≤ λq ≤ 1.41

and (b) γ = 0.7 with 1.17 ≤ λq ≤ 1.51 where time t = 5 and ∆t = 0.25, 0.3125, 0.5, 1.

(a) (b)

Figure 10: (Color online) The relative error for the numerical solution Eq. (86), for (a) γ = 0.8 with 1.16 ≤ λq ≤ 1.61

and (b) γ = 0.9 with 1.14 ≤ λq ≤ 1.73 at time t = 5 and ∆t = 0.25, 0.3125, 0.5, 1.

Example 6.3. Consider the following fractional differential equation

∂u

∂t
= Kγ

∂1−γ

∂t1−γ

(
∂2u

∂x2

)
− αu+ f(x, t), (89)

where

f(x, t) = ex
[
x2(1− x)2

[
(2 + γ)t1+γ + αt2+γ

]
−Kγ

(
2− 8x+ x2 + 6x3 + x4

) Γ(3 + γ)t1+2γ

Γ(2 + 2γ)

]
,

(90)

with 0 < γ ≤ 1 and the initial and fixed boundary conditions

u(x, 0) = 0, u(0, t) = 0, u(1, t) = 0. (91)
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The exact solution of Eqs. (89) and (91) is

u(x, t) = exx2(1− x)2t2+γ . (92)

The error and order of convergence estimates found from applying the KBML1 scheme on Eq. (89)

subject to Eq. (91). Again we estimate the convergence in space and time, the results shown

in Tables 5 and 6. It can be seen that the KBML1 scheme appear to be of order O(∆x2) and

O(∆t1+γ).

Table 5: Numerical accuracy in ∆x applied to Eq. (89) with ∆t = 10−3 and R1 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆x e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1 e∞(∆t,∆x) R1

1/4 1.24e–02 – 1.17e–02 – 1.04e–02 – 1.00e–02 –

1/8 3.20e–03 1.96 2.97e–03 1.99 2.60e–03 2.01 2.47e–03 2.02

1/16 8.21e–04 1.96 7.49e–04 1.99 6.48e–04 2.00 6.16e–04 2.01

1/32 2.08e–04 1.98 1.89e–04 1.99 1.62e–04 2.00 1.54e–04 2.00

1/64 5.40e–05 1.95 4.80e–05 1.99 4.10e–05 2.00 3.80e–05 2.00

Table 6: Numerical accuracy in ∆t applied to Eq. (89) with ∆x = 10−3 and R2 is order of convergence.

γ = 0.1 γ = 0.5 γ = 0.9 γ = 1

∆t e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2 e∞(∆t,∆x) R2

1/10 5.85e–04 – 9.71e–04 – 7.78e–04 – 7.54e–04 –

1/20 2.52e–04 1.22 3.13e–04 1.64 2.00e–04 1.96 1.89e–04 2.00

1/40 1.12e–04 1.17 1.03e–04 1.61 5.20e–05 1.96 4.70e–05 2.00

1/80 5.10e–05 1.14 3.40e–05 1.58 1.30e–05 1.95 1.20e–05 1.99

1/160 2.30e–05 1.12 1.20e–05 1.55 4.00e–06 1.92 3.00e–06 1.96

In Fig. 12 we again show the comparison of the exact solution (shown as solid red lines) and the

numerical estimate found using the KBML1 methods (shown as blue dots) at the times t = 0.25,

0.5, 0.75, and 1.00, with the fractional exponents γ = 0.1 and 0.9. We also show the comparison

of the exact and numerical solution of Eq. (89) at the point x = 0.5, 0 ≤ t ≤ 1, for γ = 0.1, 0.5,

and 0.9 with ∆t = 10−3 in Fig. 11. Again from both Figs. 11 and 12, for 0 ≤ λq ≤ 1, we see the

numerical estimates is in agreement with the exact solution.
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Figure 11: (Color online) A comparison of the exact solution (solid red lines) and the numerical solution (blue dots)

for Eq. (89) at the point x = 0.5 and time 0 ≤ t ≤ 1, for γ = 0.1, 0.5, and 0.9 with ∆t = 10−3. Note γ increases in

the direction of arrow. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

(a) (b)

Figure 12: (Color online) A comparison of the exact solution (solid red lines) and the numerical solution (blue dots)

for Eq. (89) for (a) γ = 0.1 and (b) γ = 0.9 at the times t = 0.25, 0.50, 0.75, and 1.0 with ∆t = 10−3. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In this example we also investigate the stability by evaluating the relative error in the numerical

predictions in the case 1 < λq < 2γ . The relative errors are shown in Figs. 13 and 14 for γ = 0.6,

0.7, 0.8 and 0.9 at time t = 5 with ∆t = 0.25, 0.3125, 0.5, 1. The estimated ranges of λq in

these cases are 1.41 ≤ λq ≤ 1.49 for γ = 0.6, 1.48 ≤ λq ≤ 1.59 for γ = 0.7, 1.55 ≤ λq ≤ 1.71 for

γ = 0.8 and 1.61 ≤ λq ≤ 1.83 for γ = 0.9. Again, it can be seen that the relative errors decrease

as time progresses despite the relatively large time steps chosen. This demonstrates again, for this

example, that the method is stable.
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(a) (b)

Figure 13: (Color online) The relative error for the numerical solution Eq. (89), for (a) γ = 0.6 with 1.41 ≤ λq ≤ 1.49

and (b) γ = 0.7 with 1.48 ≤ λq ≤ 1.59 at the time t = 5 and ∆t = 0.25, 0.3125, 0.5, 1.

(a) (b)

Figure 14: (Color online) The relative error for the numerical solution Eq. (89), for (a) γ = 0.8 with 1.55 ≤ λq ≤ 1.71

and (b) γ = 0.9 with 1.61 ≤ λq ≤ 1.83 at the time t = 5 and ∆t = 0.25, 0.3125, 0.5, 1.

7. Conclusion

In this work, we constructed a Keller Box numerical scheme, KBML1, for the solution of

fractional subdiffusion equation. A modification of L1 scheme (ML1) was used to estimate the

Riemann–Liouville fractional derivative at the time tj+ 1
2
. The accuracy of KBML1 was found to

be order 1 + γ in time and second order in space. We proved the stability and convergence of the

KBML1 method in the case where 0 < λq < min( 1
µ0
, 2γ) and 0 < γ ≤ 1. We also demonstrated

the method is also stable numerically in the case where 1
µ0
< λq ≤ 2γ and log3 2 ≤ γ ≤ 1 by using

the Von-Neumann stability analysis and using the full numerical solution. The convergence orders

were confirmed when the scheme was applied to three test examples. This method can be used
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for more general equations where we cannot rewrite fractional partial differential equation with a

Caputo derivative on the left such as the nonlinear reaction subdiffusion models of Angstmann et

al. [41]. This will be a subject of another article in preparation.
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Appendix A. Binomial coefficient identity

Using the definition of the binomial coefficient, we can rewrite the coefficient in terms of the

Gamma function  γ

k

 = (−1)k
(

k

k − γ − 1

)
=
γΓ(k − γ)

Γ(1− γ)

(−1)k−1

k!
. (A.1)
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