370 research outputs found

    Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces

    Full text link
    We present first-principles calculations of the magnetic hyperfine fields H of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the dependence of H on the coordination number by placing the impurity in the surfaces, on top of them at the adatom positions, and in the bulk. We find a strong coordination dependence of H, different and characteristic for each impurity. The behavior is explained in terms of the on-site s-p hybridization as the symmetry is reduced at the surface. Our results are in agreement with recent experimental findings.Comment: 4 pages, 3 figure

    Fermi Surface of The One-dimensional Kondo Lattice Model

    Full text link
    We show a strong indication of the existence of a large Fermi surface in the one-dimensional Kondo lattice model. The characteristic wave vector of the model is found to be kF=(1+ρ)π/2k_F=(1+\rho )\pi /2, ρ\rho being the density of the conduction electrons. This result is at first obtained for a variant of the model that includes an antiferromagnetic Heisenberg interaction JHJ_H between the local moments. It is then directly observed in the conventional Kondo lattice (JH=0)(J_H=0), in the narrow range of Kondo couplings where the long distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure

    Influence of Carbon Concentration on the Superconductivity in MgCxNi3

    Full text link
    The influence of carbon concentration on the superconductivity (SC) in MgCx_{x}Ni3_3 has been investigated by measuring the low temperature specific heat combined with first principles electronic structure calculation. It is found that the specific heat coefficient γn=Cen/T\gamma_n=C_{en}/T of the superconducting sample (x1x\approx1) in normal state is twice that of the non-superconducting one (x0.85x\approx 0.85). The comparison of measured γn\gamma_n and the calculated electronic density of states (DOS) shows that the effective mass renormalization changes remarkably as the carbon concentration changes. The large mass renormalization for the superconducting sample and the low TcT_{c}(7K) indicate that more than one kind of boson mediated electron-electron interactions exist in MgCx_{x}Ni3_3.Comment: 4 pages, 4 figure

    An Experimental and Theoretical Study of the Variation of 4f Hybridization Across the La1-xCexIn3 Series

    Full text link
    Crystal structures of a series of La1-xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an "ellipsoidal" elongation (La-rich compounds) or a "butterfly-like" distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.Comment: 7 pages, 8 figure

    The effect of the spin-orbit interaction on the band gap of half-metals

    Get PDF
    The spin-orbit interaction can cause a nonvanishing density of states (DOS) within the minority-spin band gap of half-metals around the Fermi level. We examine the magnitude of the effect in Heusler alloys, zinc-blende half metals and diluted magnetic semiconductors, using first-principles calculations. We find that the ratio of spin-down to spin-up DOS at the Fermi level can range from below 1% (e.g. 0.5% for NiMnSb) over several percents (4.2% for (Ga,Mn)As) to 13% for MnBi.Comment: 5 pages, 3 figure

    Calculation of magnetic anisotropy energy in SmCo5

    Full text link
    SmCo5 is an important hard magnetic material, due to its large magnetic anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using density functional theory (DFT) calculations where the Sm f-bands, which are difficult to include in DFT calculations, have been treated within the LDA+U formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming from an interplay between the crystal field and the spin-orbit coupling. We found that both are of similar strengths, unlike some other Sm compounds, leading to a partial quenching of the orbital moment (f-states cannot be described as either pure lattice harmonics or pure complex harmonics), an optimal situation for enhanced MAE. A smaller portion of the MAE can be associated with the Co-d band anisotropy, related to the peak in the density of states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u., agrees reasonably with the experimental value of 13-16 meV/f.u., and the calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.

    Magnetism, Critical Fluctuations and Susceptibility Renormalization in Pd

    Full text link
    Some of the most popular ways to treat quantum critical materials, that is, materials close to a magnetic instability, are based on the Landau functional. The central quantity of such approaches is the average magnitude of spin fluctuations, which is very difficult to measure experimentally or compute directly from the first principles. We calculate the parameters of the Landau functional for Pd and use these to connect the critical fluctuations beyond the local-density approximation and the band structure.Comment: Replaced with the revised version accepted for publication. References updated, errors corrected, other change

    Electronic and structural properties of superconducting MgB2_2, CaSi2_2 and related compounds

    Full text link
    We report a detailed study of the electronic and structural properties of the 39K superconductor \mgbtwo and of several related systems of the same family, namely \mgalbtwo, \bebtwo, \casitwo and \cabesi. Our calculations, which include zone-center phonon frequencies and transport properties, are performed within the local density approximation to the density functional theory, using the full-potential linearized augmented plane wave (FLAPW) and the norm-conserving pseudopotential methods. Our results indicate essentially three-dimensional properties for these compounds; however, strongly two-dimensional σ\sigma-bonding bands contribute significantly at the Fermi level. Similarities and differences between \mgbtwo and \bebtwo (whose superconducting properties have not been yet investigated) are analyzed in detail. Our calculations for \mgalbtwo show that metal substitution cannot be fully described in a rigid band model. \casitwo is studied as a function of pressure, and Be substitution in the Si planes leads to a stable compound similar in many aspects to diborides.Comment: Revised version, Phys.Rev.B in pres

    Striped antiferromagnetic order and electronic properties of stoichiometric LiFeAs from first-principles calculations

    Full text link
    We investigate the structural, electronic, and magnetic properties of stoichiometric LiFeAs by using state-of-the-arts first-principles method. We find the magnetic ground-state by comparing the total energies among all the possible magnetic orders. Our calculated internal positions of Li and As are in good agreement with experiment. Our results show that stoichiometric LiFeAs has almost the same striped antiferromagnetic spin order as other FeAs-based parent compounds and tetragonal FeSe do, and the experimental fact that no magnetic phase transition has been observed at finite temperature is attributed to the tiny inter-layer spin coupling

    Changing Preferences for Survival After Hospitalization With Advanced Heart Failure

    Get PDF
    ObjectivesThis study was designed to analyze how patient preferences for survival versus quality-of-life change after hospitalization with advanced heart failure (HF).BackgroundAlthough patient-centered care is a priority, little is known about preferences to trade length of life for quality among hospitalized patients with advanced HF, and it is not known how those preferences change after hospitalization.MethodsThe time trade-off utility, symptom scores, and 6-min walk distance were measured in 287 patients in the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheter Effectiveness) trial at hospitalization and again during 6 months after therapy to relieve congestion.ResultsWillingness to trade was bimodal. At baseline, the median trade for better quality was 3 months' survival time, with a modest relation to symptom severity. Preference for survival time was stable for most patients, but increase after discharge occurred in 98 of 145 (68%) patients initially willing to trade survival time, and was more common with symptom improvement and after therapy guided by pulmonary artery catheters (p = 0.034). Adjusting days alive after hospital discharge for patients' survival preference reduced overall days by 24%, with the largest reduction among patients dying early after discharge (p = 0.0015).ConclusionsPreferences remain in favor of survival for many patients despite advanced HF symptoms, but increase further after hospitalization. The bimodal distribution and the stability of patient preference limit utility as a trial end point, but support its relevance in design of care for an individual patient
    corecore