162 research outputs found

    Integrated Thermal Insulation System for Spacecraft

    Get PDF
    An integrated thermal protection system (TPS) for a spacecraft includes a grid that is bonded to skin of the spacecraft, e.g., to support the structural loads of the spacecraft. A plurality of thermally insulative, relatively large panels are positioned on the grid to cover the skin of the spacecraft to which the grid has been bonded. Each panel includes a rounded front edge and a front flange depending downwardly from the front edge. Also, each panel includes a rear edge formed with a rounded socket for receiving the rounded front edge of another panel therein, and a respective rear flange depends downwardly from each rear edge. Pins are formed on the front flanges, and pin receptacles are formed on the rear flanges, such that the pins of a panel mechanically interlock with the receptacles of the immediately forward panel. To reduce the transfer to the skin of heat which happens to leak through the panels to the grid, the grid includes stringers that are chair-shaped in cross-section

    TUFROC Thermal Protection System

    Get PDF
    Toughened Unipiece Fibrous Reinforced Oxidation-resistant Composite (TUFROC) is a tiled Thermal Protection System (TPS) suitable for reusable entry heating at 2900+ F and with single use potential up to at least 3600 F. TUFROC was initially developed for NASA's X-37 project and ultimately resulted in use on the Air Force X-37B as the wing leading edge (WLE) of the vehicle. TUFROC has similar high temperature capability compared with carbon/carbon, but is manufactured at an order of magnitude lower cost & faster schedule

    Fiber Optic Temperature Sensors in TPS: Arc Jet Model Design & Testing

    Get PDF
    Techniques for using fiber optics with Fiber Bragg Gratings (FBGs) have been developed by IFOS Corp. for use in thermal protection systems (TPS) on spacecraft heat shield materials through NASA Phase 1 and 2 SBIR efforts and have been further improved in a recent collaboration between IFOS and NASA that will be described here. Fiber optic temperature sensors offer several potential advantages over traditional thermocouple sensors including a) multiplexing many sensors in a single fiber to increase sensor density in a given array or to provide spatial resolution, b) improved thermal property match between sensor and TPS to reduce heat flow disruption, c) lack of electrical conductivity

    The HeI 584 A Forest as a Diagnostic of Helium Reionization

    Full text link
    We discuss the potential of using the HeI 584 A forest to detect and study HeII reionization. Significant 584 A absorption is expected from intergalactic HeII regions, whereas there should be no detectable absorption from low density gas in HeIII regions. Unlike HeII Ly-alpha absorption (the subject of much recent study), the difficulty with using this transition to study HeII reionization is not saturation but rather that the absorption is weak. The Gunn-Peterson optical depth for this transition is tau ~ 0.1 x_{HeII} Delta^2 [(1+z)/5]^{9/2}, where x_{HeII} is the fraction of helium in HeII and Delta is the density in units of the cosmic mean. In addition, HeI 584 A absorption is contaminated by lower redshift HI Ly-alpha absorption with a comparable flux decrement. We estimate the requirements for a definitive detection of redshifted HeI absorption from low density gas (Delta ~ 1), which would indicate that HeII reionization was occurring. We find that this objective can be accomplished (using coeval HI Ly-alpha absorption to mask dense regions and in cross correlation) with a spectral resolution of 10^4 and a signal-to-noise ratio per resolution element of ~ 10. Such specifications may be achievable on a few known z ~ 3.5 quasar sightlines with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We also discuss how HeI absorption can be used to measure the hardness of the ionizing background above 13.6 eV.Comment: 12 pages, 5 figures, updated to match published versio

    Genetic characterization of the complete genome of a highly divergent simian T-lymphotropic virus (STLV) type 3 from a wild Cercopithecus mona monkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent discoveries of novel human T-lymphotropic virus type 3 (HTLV-3) and highly divergent simian T-lymphotropic virus type 3 (STLV-3) subtype D viruses from two different monkey species in southern Cameroon suggest that the diversity and cross-species transmission of these retroviruses are much greater than currently appreciated.</p> <p>Results</p> <p>We describe here the first full-length sequence of a highly divergent STLV-3d(Cmo8699AB) virus obtained by PCR-based genome walking using DNA from two dried blood spots (DBS) collected from a wild-caught <it>Cercopithecus mona </it>monkey. The genome of STLV-3d(Cmo8699AB) is 8913-bp long and shares only 77% identity to other PTLV-3s. Phylogenetic analyses using Bayesian and maximum likelihood inference clearly show that this highly divergent virus forms an independent lineage with high posterior probability and bootstrap support within the diversity of PTLV-3. Molecular dating of concatenated <it>gag-pol-env-tax </it>sequences inferred a divergence date of about 115,117 years ago for STLV-3d(Cmo8699AB) indicating an ancient origin for this newly identified lineage. Major structural, enzymatic, and regulatory gene regions of STLV-3d(Cmo8699AB) are intact and suggest viral replication and a predicted pathogenic potential comparable to other PTLV-3s.</p> <p>Conclusion</p> <p>When taken together, the inferred ancient origin of STLV-3d(Cmo8699AB), the presence of this highly divergent virus in two primate species from the same geographical region, and the ease with which STLVs can be transmitted across species boundaries all suggest that STLV-3d may be more prevalent and widespread. Given the high human exposure to nonhuman primates in this region and the unknown pathogenicity of this divergent PTLV-3, increased surveillance and expanded prevention activities are necessary. Our ability to obtain the complete viral genome from DBS also highlights further the utility of this method for molecular-based epidemiologic studies.</p

    Cosmological Parameters from Pre-Planck CMB Measurements

    Get PDF
    Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0.9690 +/- 0.0089, is less than unity at the 3.6 sigma level, consistent with simple models of inflation. The damping tail of the power spectrum at high resolution, combined with the amplitude of gravitational lensing measured by ACT and SPT, constrains the effective number of relativistic species to be N_eff = 3.28 +/- 0.40, in agreement with the standard model's three species of light neutrinos.Comment: 5 pages, 4 figure

    Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements

    Full text link
    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w=1w=-1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density ΩΛ\Omega_\Lambda confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review Letters, added sentence on models with non-standard primordial power spectr

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic
    corecore