79 research outputs found

    Patients' inability to perform a preoperative cardiopulmonary exercise test or demonstrate an anaerobic threshold is associated with inferior outcomes after major colorectal surgery.

    Get PDF
    BACKGROUND: Surgical patients with poor functional capacity, determined by oxygen consumption at anaerobic threshold (AT) during cardiopulmonary exercise testing (CPET), experience longer hospital stays and worse short- and medium-term survival. However, previous studies excluded patients who were unable to perform a CPET or who failed to demonstrate an AT. We hypothesized that such patients are at risk of inferior outcomes after elective surgery. METHODS: All patients undergoing major colorectal surgery attempted CPET to assist in the planning of care. Patients were stratified by their test results into Fit (AT ≥ 11.0 ml O2 kg(-1) min(-1)), Unfit (AT < 11.0 ml O2 kg(-1) min(-1)), or Unable to CPET groups (failed to pedal or demonstrate an AT). For each group, we determined hospital stay and mortality. RESULTS: Between March 2009 and April 2010, 269 consecutive patients were screened, and proceeded to bowel resection. Median hospital stay was 8 days (IQR 5.1-13.4) and there were 44 deaths (16%) at 2 yr; 26 (9.7%) patients were categorized as Unable to CPET, 69 (25.7%) Unfit and 174 (64.7%) Fit. There were statistically significant differences between the three groups in hospital stay [median (IQR) 14.0 (10.5-23.8) vs 9.9 (5.5-15) vs 7.1 (4.9-10.8) days, P < 0.01] and mortality at 2 yr [11/26 (42%) vs 14/69 (20%) vs 19/174 (11%), respectively (P < 0.01)] although the differences between Unable and Unfit were not statistically different. CONCLUSIONS: Patients' inability to perform CPET is associated with inferior outcomes after major colorectal surgery. Future studies evaluating CPET in risk assessment for major surgery should report outcomes for this subgroup

    Significant improvements in the analysis of perfluorinated compounds in water and fish - Results from an interlaboratory method evaluation study

    Get PDF
    The 2nd international interlaboratory study (ILS) on perfluorinated compounds (PFCs) in environmental samples was organized to assess the performance of 21 North American and European laboratories on the analysis of PFCs in water and fish. A study protocol was provided to assess accuracy, precision, matrix effects and to study the use of in-house standards. The participants used shared native and mass-labelled standards that were provided for this study to quantify the PFC concentrations in the samples. Matrix effects in the determination of PFCs can be considerable and can decrease the sensitivity, the accuracy and internal standard recoveries. Therefore, two quantification methods were evaluated by all laboratories: standard addition quantification (SAQ) and solvent-based calibration curve quantification (SBCCQ; using mass-labelled internal standards (IS)). The between laboratory reproducibility (i.e. coefficient of variance) was smaller for the SBCCQ results (except for PFBS and PFHxS for which no mass-labelled analogues were available) compared to those obtained by the SAQ method. The within laboratory precision of individual laboratories is good (mean for all PFCs in water 12% and 6.8% in fish). The good performance is partially attributable to the use of well-defined native- and mass-labelled standards. Therefore, the SBCCQ method is recommended. The results show that analytical methods for PFCs in water and fish have improved considerably. Critical steps identified in this study are (i) the use of well-defined native standards for quantification, (ii) the use of mass-labelled internal standards (preferably one for each target compound) and (iii) minimization of matrix effects by a better clean up. © 2008 Elsevier B.V. All rights reserved

    Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection

    Get PDF
    AbstractIt remains largely unknown which factors determine the clinical outcome of human metapneumovirus (HMPV) infections. The aim of the present study was to analyse whether exposure to bacterial pathogens can influence HMPV infections. From 57 children, serum samples and colonization data for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus and Streptococcus pneumoniae were collected at 1.5, 6, 14 and 24 months of age. Seroconversion rates to HMPV were determined and related to bacterial carriage. Frequent nasopharyngeal carriage (≥2 times in the first 2 years of life) of S. pneumoniae, but not of the other three pathogens, was associated with increased seroconversion rates of infants to HMPV at the age of 2 years (frequently vs. less exposed, 93% vs. 59%; p <0.05). Subsequently, the susceptibility of well-differentiated normal human bronchial epithelial cells (wd-NHBE) pre-incubated with bacterial pathogens to in vitro HMPV infection was evaluated. Pre-incubation of wd-NHBE with S. pneumoniae resulted in increased susceptibility to infection with HMPV-enhanced green fluorescent protein (EGFP), as determined by enumeration of EGFP-positive cells. This was not the case for cells pre-incubated with H. influenzae, M. catarrhalis on S. aureus. We conclude that exposure to S. pneumoniae can modulate HMPV infection

    Contaminants in popular farmed fish consumed in the Netherlands and their levels in fish feed

    Get PDF
    Investigated is a wide range of pollutants in the top five consumed fish in the Netherlands (salmon, trout, tilapia, pangasius and shrimps). Farmed fish samples were collected from different sources (supermarkets, fish stores, markets and suppliers for restaurants) and analysed for PCDD/Fs, PCBs, organochlorine pesticides (OCPs), PBDEs, HBCD, PFCs, heavy metals and residues of antibiotics. Furthermore, fish feeds and ingredients were collected and investigated for mycotoxins and toxaphene residue

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Fungal Planet description sheets: 1042–1111

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii. Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis. Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica. Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens. Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias. India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii. Poland, Lecanicillium praecognitum on insects' frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.)from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa. Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae. UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis. USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.)on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.)from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes

    Mineral Sciences building (Artlantis 3D model)

    No full text
    Built in a simple style, the building reflects elements of the Little Brazilian or Modern Brazilian style and has a light green and white terrazzo cover and diamond-shaped windows adorning the two entrances. Initially known as the Third Mathematics and Sciences building, it was designed by architects A L Meiring and P R Nel, and was inaugurated on 3 May 1955. It was designed to form part of the inner court of the university. An identical building was planned to the south of the Engineering Tower to ensure the building would not clash with any future buildings. In the 1980s various departments were relocated resulting in the natural convergence of all the earth sciences departments into the same building, after which the name was changed to the Mineral Sciences building.Artlantis model. Use Artlantis to access model. Download Artlantis from http://www.artlantis.com/index.php?page=download/demo/index.Created by 3rd year B.Sc.(Arch) student, University of Pretoria, 2008

    Mineral Sciences Building (Artlantis virtual model 2)

    No full text
    Built in a simple style, the building reflects elements of the Little Brazilian or Modern Brazilian style and has a light green and white terrazzo cover and diamond-shaped windows adorning the two entrances. Initially known as the Third Mathematics and Sciences building, it was designed by architects A L Meiring and P R Nel, and was inaugurated on 3 May 1955. It was designed to form part of the inner court of the university. An identical building was planned to the south of the Engineering Tower to ensure the building would not clash with any future buildings. In the 1980s various departments were relocated resulting in the natural convergence of all the earth sciences departments into the same building, after which the name was changed to the Mineral Sciences building.Created with Artlantis. JPEG image, Dimensions: 2048 x 1536, Size: 313KB.Created by 3rd year B.Sc.(Arch) student, University of Pretoria, 2008

    Mineral Sciences Building (Artlantis virtual model 1)

    No full text
    Built in a simple style, the building reflects elements of the Little Brazilian or Modern Brazilian style and has a light green and white terrazzo cover and diamond-shaped windows adorning the two entrances. Initially known as the Third Mathematics and Sciences building, it was designed by architects A L Meiring and P R Nel, and was inaugurated on 3 May 1955. It was designed to form part of the inner court of the university. An identical building was planned to the south of the Engineering Tower to ensure the building would not clash with any future buildings. In the 1980s various departments were relocated resulting in the natural convergence of all the earth sciences departments into the same building, after which the name was changed to the Mineral Sciences building.Created with Artlantis. JPEG image, Dimensions: 2048 x 1536, Size: 927KB.Created by 3rd year B.Sc.(Arch) student, University of Pretoria, 2008
    corecore