10 research outputs found

    Careers in Academia and Industry: Transitions and Challenges

    Get PDF
    Start the career planning process with self-discovery and feedback from mentors. Understand the setting, culture, organizational structure, and leadership of the organizations under consideration for one’s career. Understand the expectations of potential career paths. For personal development beyond hard knowledge and skills, acquire excellent people skills and a strong network. Careers are dynamic. Maintain flexibility. Moving between environments (academia vs. industry) can be challenging, but those who successfully navigate this do so with extensive planning

    Effects of Restricted Fructose Access on Body Weight and Blood Pressure Circadian Rhythms

    Get PDF
    High-fructose diet is known to produce cardiovascular and metabolic pathologies. The objective was to determine whether the timing of high fructose (10% liquid solution) intake affect the metabolic and cardiovascular outcomes. Male C57BL mice with radiotelemetric probes were divided into four groups: (1) 24 h water (control); (2) 24 h fructose (F24); (3) 12 h fructose during the light phase (F12L); (4) 12 h fructose during the dark phase (F12D). All fructose groups had higher fluid intake. Body weight was increased in mice on restricted access with no difference in total caloric intake. Fasting glycemia was higher in groups with restricted access. F24 mice showed a fructose-induced blood pressure increase during the dark period. Blood pressure circadian rhythms were absent in F12L mice. Results suggest that the timing of fructose intake is an important variable in the etiology of cardiovascular and metabolic pathologies produced by high fructose consumption

    Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure

    Get PDF
    BACKGROUND: Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models. METHODS: Two independent rodent heart failure models were used for the studies: transverse aortic constriction/myocardial infarction (MI) in mice and post-MI remodeling in rats. Seventy-five mice underwent a prevention treatment strategy with a KE comprised of hexanoyl-hexyl-3-hydroxybutyrate KE (KE-1) diet, and 77 rats were treated in either a prevention or treatment regimen using a commercially available β-hydroxybutyrate-(R)-1,3-butanediol monoester (DeltaG; KE-2) diet. RESULTS: The KE-1 diet in mice elevated β-hydroxybutyrate levels during nocturnal feeding, whereas the KE-2 diet in rats induced ketonemia throughout a 24-hour period. The KE-1 diet preventive strategy attenuated development of left ventricular dysfunction and remodeling post-transverse aortic constriction/MI (left ventricular ejection fraction±SD, 36±8 in vehicle versus 45±11 in KE-1; P=0.016). The KE-2 diet therapeutic approach also attenuated left ventricular dysfunction and remodeling post-MI (left ventricular ejection fraction, 41±11 in MI-vehicle versus 61±7 in MI-KE-2; P<0.001). In addition, ventricular weight, cardiomyocyte cross-sectional area, and the expression of ANP (atrial natriuretic peptide) were significantly attenuated in the KE-2-treated MI group. However, treatment with KE-2 did not influence cardiac fibrosis post-MI. The myocardial expression of the ketone transporter and 2 ketolytic enzymes was significantly increased in rats fed KE-2 diet along with normalization of myocardial ATP levels to sham values. CONCLUSIONS: Chronic oral supplementation with KE was effective in both prevention and treatment of heart failure in 2 preclinical animal models. In addition, our results indicate that treatment with KE reprogrammed the expression of genes involved in ketone body utilization and normalized myocardial ATP production following MI, consistent with provision of an auxiliary fuel. These findings provide rationale for the assessment of KEs as a treatment for patients with heart failure

    Low Dose Nerve Agent Sarin Causes Dilated Cardiomyopathy and Autonomic Imbalance in Mice

    Get PDF
    Sarin, a lethal chemical nerve agent, may be a causative factor in multifactorial syndrome implicated in the Gulf War and Tokyo terrorist attacks. While high dose results in seizure and death, low dose exposure may lead to autonomic imbalance and chronic cardiac pathologies. In the present study, echocardiography and electrocardiography were used to examine the late onset effects of a low dose sarin on cardiac structure and function in mice. Stress responsiveness of the hypothalamic pituitary adrenal (HPA) axis was also tested. Findings demonstrate changes consistent with a dilated cardiomyopathy, including left ventricular dilatation, reduced contractility, and altered electrophysiological and inotropic responses to β adrenergic stimulation. Results also indicate altered stress responsiveness of HPA indicating autonomic imbalance. The role of low-dose sarin/organophosphate exposure needs to be considered in military and civilian population who suffer from autonomic imbalance and/or cardiomyopathies of indeterminate origin

    Reducing the risk of Dengue with Proper Diagnosis, Treatment and Education of People

    Get PDF
    Aedes aegypti is known to play a significant role in the transmission of various dreadful diseases such as dengue fever, chikungunya and yellow fever. Dengue fever (DF) is primarily caused by dengue fever virus (DENV). As per state health department report released in May, 2014 Maharashtra has reported 722 cases of dengue this year accounting for 25% of the dengue cases around the country. DENV serotypes are majorly transmitted by infected female mosquito that takes a blood meal from an infected person with DF. During the initial 2–10 day febrile period, DENV spreads within the body of the mosquito infecting the gut lining and later to salivary gland. Mosquito lay their eggs in artificial and natural stagnant water containers. When an infected female mosquito bites a person the virus enters the skin with the mosquito's saliva and infects leucocytes and reproduces inside these cells. The leucocytes respond by producing cytokines and interferons, causing high fever and severe pains. In severe infection, the virus invades organs like liver and bone marrow thereby lowering the blood pressure and internal bleeding leading to a risk of dengue hemorrhagic fever and dengue shock syndrome. Dengue NS-1 Antigen test is confirmatory for early and immediate diagnosis of dengue. The state of infection can be monitored by examination of platelet counts. As there is no antiviral drug discovered against dengue, so causing serious damage to people of all age groups. People should be educated and awareness should be carried out to overcome such a disease

    Effects of Restricted Fructose Access on Body Weight and Blood Pressure Circadian Rhythms

    Get PDF
    High-fructose diet is known to produce cardiovascular and metabolic pathologies. The objective was to determine whether the timing of high fructose (10% liquid solution) intake affect the metabolic and cardiovascular outcomes. Male C57BL mice with radiotelemetric probes were divided into four groups: (1) 24 h water (control); (2) 24 h fructose (F24); (3) 12 h fructose during the light phase (F12L); (4) 12 h fructose during the dark phase (F12D). All fructose groups had higher fluid intake. Body weight was increased in mice on restricted access with no difference in total caloric intake. Fasting glycemia was higher in groups with restricted access. F24 mice showed a fructose-induced blood pressure increase during the dark period. Blood pressure circadian rhythms were absent in F12L mice. Results suggest that the timing of fructose intake is an important variable in the etiology of cardiovascular and metabolic pathologies produced by high fructose consumption

    Effects of Restricted Fructose Access on Body Weight and Blood Pressure Circadian Rhythms

    No full text
    High-fructose diet is known to produce cardiovascular and metabolic pathologies. The objective was to determine whether the timing of high fructose (10% liquid solution) intake affect the metabolic and cardiovascular outcomes. Male C57BL mice with radiotelemetric probes were divided into four groups: (1) 24 h water (control); (2) 24 h fructose (F24); (3) 12 h fructose during the light phase (F12L); (4) 12 h fructose during the dark phase (F12D). All fructose groups had higher fluid intake. Body weight was increased in mice on restricted access with no difference in total caloric intake. Fasting glycemia was higher in groups with restricted access. F24 mice showed a fructose-induced blood pressure increase during the dark period. Blood pressure circadian rhythms were absent in F12L mice. Results suggest that the timing of fructose intake is an important variable in the etiology of cardiovascular and metabolic pathologies produced by high fructose consumption

    Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure

    No full text
    BACKGROUND: Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models. METHODS: Two independent rodent heart failure models were used for the studies: transverse aortic constriction/myocardial infarction (MI) in mice and post-MI remodeling in rats. Seventy-five mice underwent a prevention treatment strategy with a KE comprised of hexanoyl-hexyl-3-hydroxybutyrate KE (KE-1) diet, and 77 rats were treated in either a prevention or treatment regimen using a commercially available β-hydroxybutyrate-(R)-1,3-butanediol monoester (DeltaG; KE-2) diet. RESULTS: The KE-1 diet in mice elevated β-hydroxybutyrate levels during nocturnal feeding, whereas the KE-2 diet in rats induced ketonemia throughout a 24-hour period. The KE-1 diet preventive strategy attenuated development of left ventricular dysfunction and remodeling post-transverse aortic constriction/MI (left ventricular ejection fraction±SD, 36±8 in vehicle versus 45±11 in KE-1; P=0.016). The KE-2 diet therapeutic approach also attenuated left ventricular dysfunction and remodeling post-MI (left ventricular ejection fraction, 41±11 in MI-vehicle versus 61±7 in MI-KE-2; P<0.001). In addition, ventricular weight, cardiomyocyte cross-sectional area, and the expression of ANP (atrial natriuretic peptide) were significantly attenuated in the KE-2-treated MI group. However, treatment with KE-2 did not influence cardiac fibrosis post-MI. The myocardial expression of the ketone transporter and 2 ketolytic enzymes was significantly increased in rats fed KE-2 diet along with normalization of myocardial ATP levels to sham values. CONCLUSIONS: Chronic oral supplementation with KE was effective in both prevention and treatment of heart failure in 2 preclinical animal models. In addition, our results indicate that treatment with KE reprogrammed the expression of genes involved in ketone body utilization and normalized myocardial ATP production following MI, consistent with provision of an auxiliary fuel. These findings provide rationale for the assessment of KEs as a treatment for patients with heart failure

    Reduced Apolipoprotein M and Adverse Outcomes across the Spectrum of Human Heart Failure

    No full text
    Background: Apo (apolipoprotein) M mediates the physical interaction between high-density lipoprotein (HDL) particles and sphingosine-1-phosphate (S1P). Apo M exerts anti-inflammatory and cardioprotective effects in animal models. Methods: In a subset of PHFS (Penn Heart Failure Study) participants (n=297), we measured apo M by Enzyme-Linked ImmunoSorbent Assay (ELISA). We also measured total S1P by liquid chromatography-mass spectrometry and isolated HDL particles to test the association between apo M and HDL-associated S1P. We confirmed the relationship between apo M and outcomes using modified aptamer-based apo M measurements among 2170 adults in the PHFS and 2 independent cohorts: the Washington University Heart Failure Registry (n=173) and a subset of TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial; n=218). Last, we examined the relationship between apo M and ≈5000 other proteins (SomaScan assay) to identify biological pathways associated with apo M in heart failure. Results: In the PHFS, apo M was inversely associated with the risk of death (standardized hazard ratio, 0.56 [95% CI, 0.51-0.61]; P<0.0001) and the composite of death/ventricular assist device implantation/heart transplantation (standardized hazard ratio, 0.62 [95% CI, 0.58-0.67]; P<0.0001). This relationship was independent of HDL cholesterol or apo AI levels. Apo M remained associated with death (hazard ratio, 0.78 [95% CI, 0.69-0.88]; P<0.0001) and the composite of death/ventricular assist device/heart transplantation (hazard ratio, 0.85 [95% CI, 0.76-0.94]; P=0.001) in models that adjusted for multiple confounders. This association was present in both heart failure with reduced and preserved ejection fraction and was replicated in the Washington University cohort and a cohort with heart failure with preserved ejection fraction only (TOPCAT). The S1P and apo M content of isolated HDL particles strongly correlated (R=0.81, P<0.0001). The top canonical pathways associated with apo M were inflammation (negative association), the coagulation system (negative association), and liver X receptor/retinoid X receptor activation (positive association). The relationship with inflammation was validated with multiple inflammatory markers measured with independent assays. Conclusions: Reduced circulating apo M is independently associated with adverse outcomes across the spectrum of human heart failure. Further research is needed to assess whether the apo M/S1P axis is a suitable therapeutic target in heart failure
    corecore