5 research outputs found

    Use case scenarios and preliminary reference model

    Get PDF
    This document provides the starting point for the development of dependability solutions in the HIDENETS project with the following contents: (1) A conceptual framework is defined that contains the relevant terminology, threats and general requirements. This framework is a HIDENETS relevant subset of existing state-of-the-art views in the scientific dependability community. Furthermore, the dependability framework contains a first list of relevant functionalities in the communication and middleware level, which will act as input for the architectural discussions in HIDENETS work packages (WPs) 2 and 3. (2) A set of 17 applications with HIDENETS relevance is identified and their corresponding dependability requirements are derived. These applications belong mostly to the class of car-tocar and car-to-infrastructure services and have been selected due to their different types of dependability needs. (3) The applications have been grouped in six HIDENETS use cases, each consisting of a set of applications. The use cases will be the basis for the development of the dependability solutions in all other WPs. Together with a description of each use-case, application-specific architectural aspects are identified and corresponding failure modes and challenges are listed. (4) The business impact of dependability solutions for these use cases is analysed. (5) A preliminary definition of a HIDENETS reference model is provided, which contains highlevel architectural assumptions. This HIDENETS reference model will be further developed in the course of the HIDENETS projects in close cooperation with the other WPs, which is the reason why the preliminary version also contains a collection of potential contributions from other WPs that shall be developed and investigated in the course of the HIDENETS project. In summary, the identified use-cases and their requirements clearly show the large number of dependability related challenges. First steps towards technical solutions have been made in this report in the preliminary reference model, whereas the other work-packages have started in the meanwhile to develop such solutions further based on 'middleware technology' (WP2), 'communication protocols' (WP3), 'quantitative analysis methodology' (WP4), and 'design and testing methodology' (WP5

    The NOBEL2 approach to resilience in future transport networks

    Get PDF
    IST project NOBEL2 results on resilience strategies for next-generation optical transport networks are presented, paving the way towards cost-effective, scalable and easy-to-maintain multi-service network architectures.Postprint (published version

    Revised reference model

    Get PDF
    This document contains an update of the HIDENETS Reference Model, whose preliminary version was introduced in D1.1. The Reference Model contains the overall approach to development and assessment of end-to-end resilience solutions. As such, it presents a framework, which due to its abstraction level is not only restricted to the HIDENETS car-to-car and car-to-infrastructure applications and use-cases. Starting from a condensed summary of the used dependability terminology, the network architecture containing the ad hoc and infrastructure domain and the definition of the main networking elements together with the software architecture of the mobile nodes is presented. The concept of architectural hybridization and its inclusion in HIDENETS-like dependability solutions is described subsequently. A set of communication and middleware level services following the architecture hybridization concept and motivated by the dependability and resilience challenges raised by HIDENETS-like scenarios is then described. Besides architecture solutions, the reference model addresses the assessment of dependability solutions in HIDENETS-like scenarios using quantitative evaluations, realized by a combination of top-down and bottom-up modelling, as well as verification via test scenarios. In order to allow for fault prevention in the software development phase of HIDENETS-like applications, generic UML-based modelling approaches with focus on dependability related aspects are described. The HIDENETS reference model provides the framework in which the detailed solution in the HIDENETS project are being developed, while at the same time facilitating the same task for non-vehicular scenarios and application

    The NOBEL2 approach to resilience in future transport networks

    No full text
    IST project NOBEL2 results on resilience strategies for next-generation optical transport networks are presented, paving the way towards cost-effective, scalable and easy-to-maintain multi-service network architectures

    Dissemination Level

    No full text
    are stored in PDF, with the report number as filename. Alternatively, reports are available by post from the above address. DENETS ghly DEpendable IP-based NETworks and Service
    corecore