23,948 research outputs found
The Feynman-Wilson gas and the Lund model
We derive a partition function for the Lund fragmentation model and compare
it with that of a classical gas. For a fixed rapidity ``volume'' this partition
function corresponds to a multiplicity distribution which is very close to a
binomial distribution. We compare our results with the multiplicity
distributions obtained from the JETSET Monte Carlo for several scenarios.
Firstly, for the fragmentation vertices of the Lund string. Secondly, for the
final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure
DC-10 composite vertical stabilizer ground test program
A review of the structural configuration and ground test program is presented. Particular emphasis is placed on the testing of a full-scale stub box test subcomponent and full span ground test unit. The stub box subcomponent was tested in an environmental chamber under ambient, cold/wet, and hot/wet conditions. The test program included design limit static loads, fatigue spectrum loading to approximately two service lifetimes (with and without damage), design limit damage tolerance tests, and a final residual strength test to a structural failure. The first full-scale ground test unit was tested under ambient conditions. The test unit was to have undergone static, fatigue, and damage tolerance tests but a premature structural failure occurred at design limit load during the third limit load test. A failure theory was developed which explains the similarity in types of failure and the large load discrepancy at failure between the two test articles. The theory attributes both failures to high stress concentrations at the edge of the lower rear spar access opening. A second full-scale ground test unit has been modified to incorporate the various changes resulting from the premature failure. The article has been assembled and is active in the test program
Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts
The currently accepted model for gamma-ray burst phenomena involves the
violent formation of a rapidly rotating solar mass black hole. Gravitational
waves should be associated with the black-hole formation, and their detection
would permit this model to be tested, the black hole progenitor (e.g.,
coalescing binary or collapsing stellar core) identified, and the origin of the
gamma rays (within the expanding relativistic fireball or at the point of
impact on the interstellar medium) located. Even upper limits on the
gravitational-wave strength associated with gamma-ray bursts could constrain
the gamma-ray burst model. To do any of these requires joint observations of
gamma-ray burst events with gravitational and gamma-ray detectors. Here we
examine how the quality of an upper limit on the gravitational-wave strength
associated with gamma-ray burst observations depends on the relative
orientation of the gamma-ray-burst and gravitational-wave detectors, and apply
our results to the particular case of the Swift Burst-Alert Telescope (BAT) and
the LIGO gravitational-wave detectors. A result of this investigation is a
science-based ``figure of merit'' that can be used, together with other mission
constraints, to optimize the pointing of the Swift telescope for the detection
of gravitational waves associated with gamma-ray bursts.Comment: aastex, 14 pages, 2 figure
Asp-120 Locates Zn2 for Optimal Metallo-ÎČ-lactamase Activity
Metallo-ÎČ-lactamases are zinc-dependent hydrolases that inactivate ÎČ-lactam antibiotics, rendering bacteria resistant to them. Asp-120 is fully conserved in all metallo-ÎČ-lactamases and is central to catalysis. Several roles have been proposed for Asp-120, but so far there is no agreed consensus. We generated four site-specifically substituted variants of the enzyme BcII from Bacillus cereus as follows: D120N, D120E, D120Q, and D120S. Replacement of Asp-120 by other residues with very different metal ligating capabilities severely impairs the lactamase activity without abolishing metal binding to the mutated site. A kinetic study of these mutants indicates that Asp-120 is not the proton donor, nor does it play an essential role in nucleophilic activation. Spectroscopic and crystallographic analysis of D120S BcII, the least active mutant bearing the weakest metal ligand in the series, reveals that this enzyme is able to accommodate a dinuclear center and that perturbations in the active site are limited to the Zn2 site. It is proposed that the role of Asp-120 is to act as a strong Zn2 ligand, locating this ion optimally for substrate binding, stabilization of the development of a partial negative charge in the ÎČ-lactam nitrogen, and protonation of this atom by a zinc-bound water molecule
Synthesizing Program Input Grammars
We present an algorithm for synthesizing a context-free grammar encoding the
language of valid program inputs from a set of input examples and blackbox
access to the program. Our algorithm addresses shortcomings of existing grammar
inference algorithms, which both severely overgeneralize and are prohibitively
slow. Our implementation, GLADE, leverages the grammar synthesized by our
algorithm to fuzz test programs with structured inputs. We show that GLADE
substantially increases the incremental coverage on valid inputs compared to
two baseline fuzzers
First-principles calculation of the elastic dipole tensor of a point defect: Application to hydrogen in α-zirconium
The elastic dipole tensor is a fundamental quantity relating the elastic field and atomic structure of a point defect. We review three methods in the literature to calculate the dipole tensor and apply them to hydrogen in α -zirconium using density functional theory (DFT). The results are compared with the dipole tensor deduced from earlier experimental measurements of the λ tensor for hydrogen in α -zirconium. There are significant errors with all three methods. We show that calculation of the λ tensor, in combination with experimentally measured elastic constants and lattice parameters, yields dipole tensor components that differ from experimental values by only 10%â20%. There is evidence to suggest that current state-of-the-art DFT calculations underestimate bonding between hydrogen and α -zirconium
A Model for Phase Transition based on Statistical Disassembly of Nuclei at Intermediate Energies
Consider a model of particles (nucleons) which has a two-body interaction
which leads to bound composites with saturation properties. These properties
are : all composites have the same density and the ground state energies of
composites with k nucleons are given by -kW+\sigma k^{2/3} where W and \sigma
are positive constants. W represents a volume term and \sigma a surface tension
term. These values are taken from nuclear physics. We show that in the large N
limit where N is the number of particles such an assembly in a large enclosure
at finite temperature shows properties of liquid-gas phase transition. We do
not use the two-body interaction but the gross properties of the composites
only. We show that (a) the p-\rho isotherms show a region where pressure does
not change as changes just as in Maxwell construction of a Van der Waals
gas, (b) in this region the chemical potential does not change and (c) the
model obeys the celebrated Clausius-Clapeyron relations. A scaling law for the
yields of composites emerges. For a finite number of particles N (upto some
thousands) the problem can be easily solved on a computer. This allows us to
study finite particle number effects which modify phase transition effects. The
model is calculationally simple. Monte-Carlo simulations are not needed.Comment: RevTex file, 21 pages, 5 figure
- âŠ