56 research outputs found

    Effects of uncertainty and spousal support on infertility-related quality of life in women undergoing assisted reproductive technologies

    Get PDF
    Purpose The purpose of this study was to investigate the effects of uncertainty and spousal support on infertility-related quality of life (QoL) in women undergoing assisted reproductive technologies. Methods In this correlational survey study, 172 infertile women undergoing assisted reproductive technologies for infertility treatment at M hospital in Seoul participated. Data collection took place at the outpatient department of M hospital using a self-report questionnaire from July to August 2019. Data were analyzed using SPSS for Windows version 28.0. Results The mean scores for uncertainty, spousal support, and infertility-related quality of life (QoL) were 28.35 (out of 50), 86.67 (out of 115), and 57.98 (out of 100), respectively. Infertility-related quality of life (QoL) was positively correlated with spousal support and negatively correlated with uncertainty. According to the regression analysis, infertility-related quality of life (QoL) was significantly affected by uncertainty, total number of assisted reproductive technology treatments, marriage duration, subjective health status, the financial burden of infertility testing, and the presence of a burdensome person. These variables had an explanatory power of 35.0% for infertility-related quality of life (QoL). Conclusion Uncertainty was an important factor influencing infertility-related quality of life (QoL) among women undergoing assisted reproductive technologies. It is necessary to develop and implement a nursing intervention program focused on reducing various forms of uncertainty during assisted reproductive procedures and to consider other factors affecting infertility-related quality of life (QoL) in the clinical setting

    A Case of Hyperglycemic Hyperosmolar State Associated with Graves' Hyperthyroidism: A Case Report

    Get PDF
    Hyperglycemic hyperosmolar state (HHS) is an acute complication mostly occurring in elderly type 2 diabetes mellitus (DM). Thyrotoxicosis causes dramatic increase of glycogen degradation and/or gluconeogenesis and enhances breakdown of triglycerides. Thus, in general, it augments glucose intolerance in diabetic patients. A 23-yr-old female patient with Graves' disease and type 2 DM, complying with methimazole and insulin injection, had symptoms of nausea, polyuria and generalized weakness. Her serum glucose and osmolarity were 32.7 mM/L, and 321 mosm/kg, respectively. Thyroid function tests revealed that she had more aggravated hyperthyroid status; 0.01 mU/L TSH and 2.78 pM/L free T3 (reference range, 0.17-4.05, 0.31-0.62, respectively) than when she was discharged two weeks before (0.12 mU/L TSH and 1.41 pM/L free T3). Being diagnosed as HHS and refractory Graves' hyperthyroidism, she was treated successfully with intravenous fluids, insulin and high doses of methimazole (90 mg daily). Here, we described the case of a woman with Graves' disease and type 2 DM developing to HHS

    Flavopiridol Pharmacogenetics: Clinical and Functional Evidence for the Role of SLCO1B1/OATP1B1 in Flavopiridol Disposition

    Get PDF
    Flavopiridol is a cyclin-dependent kinase inhibitor in phase II clinical development for treatment of various forms of cancer. When administered with a pharmacokinetically (PK)-directed dosing schedule, flavopiridol exhibited striking activity in patients with refractory chronic lymphocytic leukemia. This study aimed to evaluate pharmacogenetic factors associated with inter-individual variability in pharmacokinetics and outcomes associated with flavopiridol therapy.Thirty-five patients who received single-agent flavopiridol via the PK-directed schedule were genotyped for 189 polymorphisms in genes encoding 56 drug metabolizing enzymes and transporters. Genotypes were evaluated in univariate and multivariate analyses as covariates in a population PK model. Transport of flavopiridol and its glucuronide metabolite was evaluated in uptake assays in HEK-293 and MDCK-II cells transiently transfected with SLCO1B1. Polymorphisms in ABCC2, ABCG2, UGT1A1, UGT1A9, and SLCO1B1 were found to significantly correlate with flavopiridol PK in univariate analysis. Transport assay results indicated both flavopiridol and flavopiridol-glucuronide are substrates of the SLCO1B1/OATP1B1 transporter. Covariates incorporated into the final population PK model included bilirubin, SLCO1B1 rs11045819 and ABCC2 rs8187710. Associations were also observed between genotype and response. To validate these findings, a second set of data with 51 patients was evaluated, and overall trends for associations between PK and PGx were found to be consistent.Polymorphisms in transport genes were found to be associated with flavopiridol disposition and outcomes. Observed clinical associations with SLCO1B1 were functionally validated indicating for the first time its relevance as a transporter of flavopiridol and its glucuronide metabolite. A second 51-patient dataset indicated similar trends between genotype in the SLCO1B1 and other candidate genes, thus providing support for these findings. Further study in larger patient populations will be necessary to fully characterize and validate the clinical impact of polymorphisms in SLCO1B1 and other transporter and metabolizing enzyme genes on outcomes from flavopiridol therapy

    Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice

    No full text
    Succinic acid is widely used as a food additive, and its effects on sepsis, cancer, ataxia, and obesity were recently reported. Dietary drug exposure studies have been conducted to evaluate the in vivo efficacy of succinic acid, but limited pharmacokinetic information is available. Therefore, this study evaluated the pharmacokinetic profiles and tissue distribution of succinic acid following a single intravenous or oral dose. A surrogate analyte, succinic acid-13C4 (13C4SA), was administrated to distinguish endogenous and exogenous succinic acid. The concentration of 13C4SA was determined by a validated analytical method using mass spectrometry. After a 10 mg/kg intravenous dose, non-compartmental pharmacokinetic analysis in plasma illustrated that the clearance, volume of distribution, and terminal half-life of 13C4SA were 4574.5 mL/h/kg, 520.8 mL/kg, and 0.56 h, respectively. Oral 13C4SA was absorbed and distributed quickly (bioavailability, 1.5%) at a dose of 100 mg/kg. In addition, 13C4SA exposure was the highest in the liver, followed by brown adipose tissue, white adipose tissue, and the kidneys. This is the first report on the pharmacokinetics of succinic acid after a single dose in mice, and these results could provide a foundation for selecting dosing regimens for efficacy studies

    Differential effects of two phosphodiesterase 4 inhibitors against lipopolysaccharide-induced neuroinflammation in mice

    No full text
    Abstract Background Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation. Results In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1β (IL-1β), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10–6 cm/s) and moderate (3.72–7.18 × 10–6 cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2–2.3 h and terminal half-lives of 7–20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively. Conclusions These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases

    PredPS: Attention-based graph neural network for predicting stability of compounds in human plasma

    No full text
    Stability of compounds in the human plasma is crucial for maintaining sufficient systemic drug exposure and considered an essential factor in the early stages of drug discovery and development. The rapid degradation of compounds in the plasma can result in poor in vivo efficacy. Currently, there are no open-source software programs for predicting human plasma stability. In this study, we developed an attention-based graph neural network, PredPS to predict the plasma stability of compounds in human plasma using in-house and open-source datasets. The PredPS outperformed the two machine learning and two deep learning algorithms that were used for comparison indicating its stability-predicting efficiency. PredPS achieved an area under the receiver operating characteristic curve of 90.1%, accuracy of 83.5%, sensitivity of 82.3%, and specificity of 84.6% when evaluated using 5-fold cross-validation. In the early stages of drug discovery, PredPS could be a helpful method for predicting the human plasma stability of compounds. Saving time and money can be accomplished by adopting an in silico-based plasma stability prediction model at the high-throughput screening stage. The source code for PredPS is available at https://bitbucket.org/krict-ai/predps and the PredPS web server is available at https://predps.netlify.app
    • …
    corecore