21 research outputs found

    Multiband Photonic Phased-Array Antenna

    Get PDF
    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements

    Constructing a Thin Disordered Self‐Protective Layer on the LiNiO₂ Primary Particles Against Oxygen Release

    Get PDF
    One of the major challenges facing the application of layered LiNiO2 (LNO) cathode materials is the oxygen release upon electrochemical cycling. Here it is shown that tailoring the provided lithium content during synthesis process can create a disordered layered Li1-xNi1+xO2 phase at the primary particle surface. The disordered surface, which serves as a self-protective layer to alleviate the oxygen loss, possesses the same layered rhombohedral structure (R m) as the inner core of primary particles of the Li1-xNi1+xO2 (x ≈ 0). With advanced synchrotron-based x-ray 3D imaging and spectroscopic techniques, a macroporous architecture within the agglomerates of LNO with ordered surface (LNO-OS) is revealed after only 40 cycles, concomitant with the reduction of nickel on the primary particle surface throughout the whole secondary particles. Such chemomechanical degradation accelerates the deterioration of LNO-OS cathodes. Comparably, there are only slight changes in the nickel valence state and interior architecture of LNO with a thin disordered surface layer (LNO-DS) after cycling, mainly arising from an improved robustness of the oxygen framework on the surface. More importantly, the disordered surface can suppress the detrimental H2 ⇋ H3 phase transition upon cycling compared to the ordered one

    Long‐Range Cationic Disordering Induces two Distinct Degradation Pathways in Co‐Free Ni‐Rich Layered Cathodes

    Get PDF
    Ni-rich layered oxides are one of the most attractive cathode materials in high-energy-density lithium-ion batteries, their degradation mechanisms are still not completely elucidated. Herein, we report a strong dependence of degradation pathways on the long-range cationic disordering of Co-free Ni-rich Li1−m(Ni0.94Al0.06)1+mO2 (NA). Interestingly, a disordered layered phase with lattice mismatch can be easily formed in the near-surface region of NA particles with very low cation disorder (NA-LCD, m≤0.06) over electrochemical cycling, while the layered structure is basically maintained in the core of particles forming a “core–shell” structure. Such surface reconstruction triggers a rapid capacity decay during the first 100 cycles between 2.7 and 4.3 V at 1 C or 3 C. On the contrary, the local lattice distortions are gradually accumulated throughout the whole NA particles with higher degrees of cation disorder (NA-HCD, 0.06≤m≤0.15) that lead to a slow capacity decay upon cycling

    Near-Infrared (NIR) Raman Spectroscopy of Precambrian Carbonate Stromatolites with Post-Depositional Organic Inclusions

    No full text
    Raman spectroscopy has promising potential for future Mars missions as a non-contact detection technique for characterizing organic material and mineralogy. Such a capability will be useful for selecting samples for detailed analysis on a rover and for selecting samples for return to Earth. Stromatolites are important evidence for the earliest life on Earth and are promising targets for Mars investigations. Although constructed by microorganisms, stromatolites are organo-sedimentary structures that can be large enough to be discovered and investigated by a Mars rover. In this paper, we report the Raman spectroscopic investigations of the carbonate mineralogy and organic layering in a Precambrian (;1.5 Gyr old) stromatolite from the Crystal Spring Formation of Southern California. Ultraviolet (UV: 266 nm), visible (514 nm, 633 nm), and near-infrared (NIR: 785 nm, 1064 nm) Raman spectra are presented. We conclude that 1064 nm excitation is the optimal excitation wavelength for avoiding intrinsic fluorescence and detecting organic carbon within the carbonate matrix. Our results confirm that NIR Raman spectroscopy has important applications for future Mars missions

    Constructing a Thin Disordered Self‐Protective Layer on the LiNiO2_2 Primary Particles Against Oxygen Release

    No full text
    One of the major challenges facing the application of layered LiNiO2_2 (LNO) cathode materials is the oxygen release upon electrochemical cycling. Here it is shown that tailoring the provided lithium content during synthesis process can create a disordered layered Li1x_{1-x}Ni1+x_{1+x}O2_2 phase at the primary particle surface. The disordered surface, which serves as a self-protective layer to alleviate the oxygen loss, possesses the same layered rhombohedral structure (R3ˉ\bar{3}m) as the inner core of primary particles of the Li1x_{1-x}Ni1+x_{1+x}O2_2 (x ≈ 0). With advanced synchrotron-based x-ray 3D imaging and spectroscopic techniques, a macroporous architecture within the agglomerates of LNO with ordered surface (LNO-OS) is revealed after only 40 cycles, concomitant with the reduction of nickel on the primary particle surface throughout the whole secondary particles. Such chemomechanical degradation accelerates the deterioration of LNO-OS cathodes. Comparably, there are only slight changes in the nickel valence state and interior architecture of LNO with a thin disordered surface layer (LNO-DS) after cycling, mainly arising from an improved robustness of the oxygen framework on the surface. More importantly, the disordered surface can suppress the detrimental H2 ⇋ H3 phase transition upon cycling compared to the ordered one
    corecore