478 research outputs found

    Hominin occupation of the Chinese Loess Plateau since about 2.1 million years ago

    Get PDF
    Considerable attention has been paid to dating the earliest appearance of hominins outside Africa. The earliest skeletal and artefactual evidence for the genus Homo in Asia currently comes from Dmanisi, Georgia, and is dated to approximately 1.77-1.85 million years ago (Ma)(1). Two incisors that may belong to Homo erectus come from Yuanmou, south China, and are dated to 1.7 Ma(2); the next-oldest evidence is an H. erectus cranium from Lantian (Gongwangling)-which has recently been dated to 1.63 Ma(3) and the earliest hominin fossils from the Sangiran dome in Java, which are dated to about 1.5-1.6 Ma(4). Artefacts from Majuangou III5 and Shangshazui(6) in the Nihewan basin, north China, have also been dated to 1.6-1.7 Ma. Here we report an Early Pleistocene and largely continuous artefact sequence from Shangchen, which is a newly discovered Palaeolithic locality of the southern Chinese Loess Plateau, near Gongwangling in Lantian county. The site contains 17 artefact layers that extend from palaeosol S15-dated to approximately 1.26 Ma-to loess L28, which we date to about 2.12 Ma. This discovery implies that hominins left Africa earlier than indicated by the evidence from Dmanisi

    First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Nepal

    Get PDF
    BACKGROUND: Tuberculosis (TB) is a major public health problem in Nepal. Strain variation in Mycobacterium tuberculosis may influence the outcome of TB infection and disease. To date, the phylogenetic diversity of M. tuberculosis in Nepal is unknown. METHODS AND FINDINGS: We analyzed 261 M. tuberculosis isolates recovered from pulmonary TB patients recruited between August 2009 and August 2010 in Nepal. M. tuberculosis lineages were determined by single nucleotide polymorphisms (SNP) typing and spoligotyping. Drug resistance was determined by sequencing the hot spot regions of the relevant target genes. Overall, 164 (62.8%) TB patients were new, and 97 (37.2%) were previously treated. Any drug resistance was detected in 50 (19.2%) isolates, and 16 (6.1%) were multidrug-resistant. The most frequent M. tuberculosis lineage was Lineage 3 (CAS/Delhi) with 106 isolates (40.6%), followed by Lineage 2 (East-Asian lineage, includes Beijing genotype) with 84 isolates (32.2%), Lineage 4 (Euro-American lineage) with 41 (15.7%) isolates, and Lineage 1 (Indo-Oceanic lineage) with 30 isolates (11.5%). Based on spoligotyping, we found 45 different spoligotyping patterns that were previously described. The Beijing (83 isolates, 31.8%) and CAS spoligotype (52, 19.9%) were the dominant spoligotypes. A total of 36 (13.8%) isolates could not be assigned to any known spoligotyping pattern. Lineage 2 was associated with female sex (adjusted odds ratio [aOR] 2.58, 95% confidence interval [95% CI] 1.42-4.67, p = 0.002), and any drug resistance (aOR 2.79; 95% CI 1.43-5.45; p = 0.002). We found no evidence for an association of Lineage 2 with age or BCG vaccination status. CONCLUSIONS: We found a large genetic diversity of M. tuberculosis in Nepal with representation of all four major lineages. Lineages 3 and 2 were dominating. Lineage 2 was associated with clinical characteristics. This study fills an important gap on the map of the M. tuberculosis genetic diversity in the Asian reg

    Intrathecal Injection of Spironolactone Attenuates Radicular Pain by Inhibition of Spinal Microglia Activation in a Rat Model

    Get PDF
    Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR) expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate whether selective MR antagonist spironolactone develop antinociceptive effects on radicular pain by inhibition neuroinflammation induced by spinal microglia activation.Radicular pain was produced by chronic compression of the dorsal root ganglia with SURGIFLO™. The expression of microglia, interleukin beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), NR1 subunit of the NMDA receptor (t-NR1), and NR1 subunit phosphorylated at Ser896 (p-NR1) were also markedly up-regulated. Intrathecal injection of spironolactone significantly attenuated pain behaviors as well as the expression of microglia, IL-1β, TNF-α, t-NR1, and p-NR1, whereas the production of IL-6 wasn't affected.These results suggest that intrathecal delivery spironolactone has therapeutic effects on radicular pain in rats. Decreasing the activation of glial cells, the production of proinflammatory cytokines and down-regulating the expression and phosphorylation of NMDA receptors in the spinal dorsal horn and dorsal root ganglia are the main mechanisms contributing to its beneficial effects

    Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.</p> <p>Result</p> <p>To develop such valuable resources in common carp (<it>Cyprinus carpio</it>), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.</p> <p>Conclusion</p> <p>BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.</p

    IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease

    Get PDF
    We thank Dr. Haohua Qian and Yichao Li (Visual function core, NEI, NIH) for technical assistance with OCT; Phyllis Silver (NEI, NIH) for EAU scoring of the eyes; Rashid Mahdi. M.J.M. for technical assistance with western blot analyses and Rafael Villasmil (NEI FLOW Cytometry Core facility) for assistance with FACS analysis.Peer reviewedPublisher PD

    Crosstalk between Spinal Astrocytes and Neurons in Nerve Injury-Induced Neuropathic Pain

    Get PDF
    Emerging research implicates the participation of spinal dorsal horn (SDH) neurons and astrocytes in nerve injury-induced neuropathic pain. However, the crosstalk between spinal astrocytes and neurons in neuropathic pain is not clear. Using a lumbar 5 (L5) spinal nerve ligation (SNL) pain model, we testified our hypothesis that SDH neurons and astrocytes reciprocally regulate each other to maintain the persistent neuropathic pain states. Glial fibrillary acidic protein (GFAP) was used as the astrocytic specific marker and Fos, protein of the protooncogene c-fos, was used as a marker for activated neurons. SNL induced a significant mechanical allodynia as well as activated SDH neurons indicated by the Fos expression at the early phase and activated astrocytes with the increased expression of GFAP during the late phase of pain, respectively. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or astroglial toxin L-α-aminoadipate (L-AA) reversed the mechanical allodynia, respectively. Immunofluorescent histochemistry revealed that intrathecal administration of c-fos ASO significantly suppressed activation of not only neurons but also astrocytes induced by SNL. Meanwhile, L-AA shortened the duration of neuronal activation by SNL. Our data offers evidence that neuronal and astrocytic activations are closely related with the maintenance of neuropathic pain through a reciprocal “crosstalk”. The current study suggests that neuronal and non-neuronal elements should be taken integrally into consideration for nociceptive transmission, and that the intervention of such interaction may offer some novel pain therapeutic strategies

    Generation of the first BAC-based physical map of the common carp genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common carp (<it>Cyprinus carpio</it>), a member of Cyprinidae, is the third most important aquaculture species in the world with an annual global production of 3.4 million metric tons, accounting for nearly 14% of the all freshwater aquaculture production in the world. Apparently genomic resources are needed for this species in order to study its performance and production traits. In spite of much progress, no physical maps have been available for common carp. The objective of this project was to generate a BAC-based physical map using fluorescent restriction fingerprinting.</p> <p>Result</p> <p>The first generation of common carp physical map was constructed using four- color High Information Content Fingerprinting (HICF). A total of 72,158 BAC clones were analyzed that generated 67,493 valid fingerprints (5.5 × genome coverage). These BAC clones were assembled into 3,696 contigs with the average length of 476 kb and a N50 length of 688 kb, representing approximately 1.76 Gb of the common carp genome. The largest contig contained 171 BAC clones with the physical length of 3.12 Mb. There are 761 contigs longer than the N50, and these contigs should be the most useful resource for future integrations with linkage map and whole genome sequence assembly. The common carp physical map is available at <url>http://genomics.cafs.ac.cn/fpc/WebAGCoL/Carp/WebFPC/</url>.</p> <p>Conclusion</p> <p>The reported common carp physical map is the first physical map of the common carp genome. It should be a valuable genome resource facilitating whole genome sequence assembly and characterization of position-based genes important for aquaculture traits.</p

    Spinal Astrocytic Activation Is Involved in a Virally-Induced Rat Model of Neuropathic Pain

    Get PDF
    Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN

    Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells

    Get PDF
    Regulatory B cells (Bregs) suppress and reduce autoimmune pathology. However, given the variety of Breg subsets, the role of Bregs in the pathogenesis of type 1 diabetes is still unclear. Here, we dissect this fundamental mechanism. We show that natural protection from type 1 diabetes in nonobese diabetic (NOD) mice is associated with increased numbers of IL-10-producing B cells, while development of type 1 diabetes in NOD mice occurs in animals with compromised IL-10 production by B cells. However, B cells from diabetic mice regain IL-10 function if activated by the innate immune receptor TLR4 and can suppress insulin-specific CD8 T cells in a dendritic cell (DC)-dependent, IL-10-mediated fashion. Suppression of CD8 T cells is reliant on B-cell contact with DCs. This cell contact results in deactivation of DCs, inducing a tolerogenic state, which in turn can regulate pathogenic CD8 T cells. Our findings emphasize the importance of DC–Breg interactions during the development of type 1 diabetes
    corecore