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Abstract
A traffic flow Lighthill, Whitham, and Richards (LWR) model is studied by means of a
proper orthogonal decomposition (POD) technique. A POD-based reduced-order
finite difference (FD) extrapolating algorithm (FDEA) with lower dimension and fully
second-order accuracy is established. Two numerical experiments are used to show
that the POD reduced-order FDEA is feasible and efficient for finding numerical
solutions of traffic flow LWR model.
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1 Introduction
Traffic is the lifeblood of the national economy. Advanced transportation and manage-
ment systems are important symbols of modernization for the nation. The study of traffic
flow has become a significant research topic (see, e.g., [–]).
The mathematical model of the traffic flow is generally a nonlinear system of partial

differential equations (PDEs). Due to its nonlinearity, there are no analytical solutions in
general. One has to rely on numerical solutions. The classical finite difference (FD) scheme
(FDS) is one of the most effective numerical methods to solve the nonlinear system of
PDEs for the traffic flow. However, the classical FDS usually includes a great number of
degrees of freedom (namely, unknown quantities) so as to cause a lot of truncation error
accumulation in computational process. Thus, even a very good FDS may appear to show
no convergence after some computing steps. Therefore, an extremelymeaningful problem
is how to establish a reduced-order FDS with fewer degrees of freedom and sufficiently
high accuracy.
The proper orthogonal decomposition (POD)method (see [–]) is an effective means

to reduce the degrees of freedom of numerical models for time-dependent PDEs and alle-
viate load calculating and the accumulation of truncation errors in the computational pro-
cess. It is mainly to find an orthonormal basis for the known data under the least squares
sense, namely, it is to find optimal order approximations for the known data. By using
the POD technique, some POD reduced-order FDSs and finite element formulations for
time-dependent PDEs have been established (see, e.g., [–]).
Though an extrapolation reduced-order FDS based on POD technique for the traf-

fic flow Aw-Rascle-Zhang (ARZ) model has been presented (see []), it has only first-
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order time accuracy. To the best of our knowledge, there is no report that the POD-
method is used to reduce the degrees of freedom of the FDS for the traffic flow Lighthill,
Whitham, and Richards (LWR) model (see [, ]). Especially, most of the existing POD-
based reduced-order numerical computational methods (see, e.g., [–, , –, ,
]) employ the numerical solutions obtained from classical numerical methods on the to-
tal time span [,T] to construct POD bases and POD-based reduced-order models, and
they then recompute the solutions on the same time span [,T], which actually belong
to repeating computations on the same time span [,T]. The method in this paper aims
to use only the first few given classical FDS solutions to construct the POD basis and
to establish a POD-based reduced-order FD extrapolating algorithm (FDEA) with fully
second-order accuracy and very few degrees of freedom for the traffic flow LWRmodel. It
is equivalent tomaking use of very few given data to infer the future traffic status, which is a
very meaningful work. Though a POD-based reduced-order FDEA for the non-stationary
Navier-Stokes equations has been established in [], it has only first-order time accuracy
too. Moreover, a POD-based reduced-order FDEA with fully second-order accuracy for a
non-stationary Burgers equation has been posed in [], but the LWRmodel here is differ-
ent from the non-stationary Burgers equation. Therefore, the POD-based reduced-order
FDEAwith fully second-order accuracy here is a newmethod and an improvement for the
existing POD-based reduced-order numerical methods (see, e.g., [–]).
The paper is organized as follows. Section  recalls the classical Lax-Wendroff scheme

(LWS) (see [–]) for the traffic flow LWR model and generates snapshots from the
first few numerical solutions computed from the equation system derived by the classical
LWS. In Section , the optimal orthonormal PODbasis is reconstructed from the elements
of the snapshots via a singular value decomposition (SVD) technique and POD-method,
and then the POD-based reduced-order FDEAwith very few degrees of freedom and fully
second-order accuracy for the traffic flow LWR model is established. In Section , the er-
ror estimates of the POD-based reduced-order FDEA solutions and the implementation
for the POD-based reduced-order FDEA are provided. In Section , two numerical exper-
iments are used to validate the feasibility and efficiency of the POD-based reduced-order
FDEA. Section  provides main conclusions and discussions.

2 Recall LWS for the traffic flow LWRmodel
The traffic flow LWR model is denoted by the following Euler conservation PDE defined
on [, J]× [,T]:

⎧⎪⎨
⎪⎩

∂ρ

∂t +
∂q
∂x = , (x, t) ∈ (, J)× (,T),

ρ(x, ) = ρ(x), x ∈ (, J),
ρ(x, t) = ρ(x, t), x = , J , t ∈ (,T),

()

where ρ ∈ (,ρm) is the density, ρm the maximum (jam) density, q(ρ) the traffic flow on
a homogeneous highway, which is assumed to be only a function of the density ρ in the
LWR model, ρ(x) the given initial density, and ρ(x, t) the given density on boundary.
More specifically, the flow q, the density ρ , and the equilibrium speed u are, respectively,
related by

q = um
(
 –

ρ

ρm

)
ρ, u = um

(
 –

ρ

ρm

)
, ()
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where um is the maximum limited speed. Thus, the traffic flow LWRmodel for the density
is written as follows:

⎧⎪⎨
⎪⎩

∂ρ

∂t + um( – ρ
ρm

) ∂ρ

∂x = , (x, t) ∈ (, J)× (,T),
ρ(x, ) = ρ(x), x ∈ (, J),
ρ(x, t) = ρ(x, t), x = , J , t ∈ (,T).

()

Let �t be the time-step increment, �x the spatial step increment, N = [T/�t], and I =
[J/�x]. By using LWS (see [–]) to discretize (), we obtain the LWS for the traffic flow
LWR model (see [, ]) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρn+i –ρni
�t =�tum( –

ρni
ρm

) ρni+–ρ
n
i +ρni–

�x – um( –
ρni
ρm

) ρni+–ρni–
�x ,

i = , , . . . , I – , n = , , . . . ,N – ,
ρ
i = ρ(xi), i = , , . . . , I,

ρn
 = ρ(, tn), ρn

J = ρ(J , tn), n = , , . . . ,N ,

()

whose stability condition is �t ≤ �x/(um| –ρm|) (see [–]) and whose solutions have
the local truncation error of the fully second-order accuracy (see [, ]), namely we have
the following error estimates:

∣∣ρ(xi, tn) – ρn
i
∣∣ =O

(
�x,�t

)
, ≤ n≤N , ≤ i ≤ I. ()

Further, we can, respectively, obtain the approximate solutions of the flow q and the equi-
librium speed u from () as follows:

qni = um
(
 –

ρn
i

ρm

)
ρn
i , uni = um

(
 –

ρn
i

ρm

)
, i = , , . . . , I,n = , , . . . ,N , ()

which have also the local truncation error of the fully second-order accuracy, namely we
have the following error estimates:

∣∣q(xi, tn) – qni
∣∣ + ∣∣u(xi, tn) – uni

∣∣ =O
(
�x,�t

)
, ≤ n≤N , ≤ i ≤ I. ()

For given time-step increment �t, spatial step increment �x, maximum (jam) density
ρm, maximum limited speed um, initial density ρ(x), and density ρ(x, t) on the boundary,
by solving the FDS (), we can obtain the classical FD solutions ρn

i ( ≤ n ≤ N ,  ≤ i ≤ I)
of the density for the traffic flow LWR model. Further, we also obtain the classical FD
solutions qni and uni ( ≤ n ≤ N ,  ≤ i ≤ I) of the flow q and the equilibrium speed u for
the traffic flow LWR model from (). We may choose the first L solutions to construct a
set {ρ l

i }Ll= ( ≤ i ≤ I , L � N ) with L × m elements from the set {ρn
i }Nn= ( ≤ i ≤ I) of the

classical FD solutions of density with N × I elements, which are known as snapshots.

3 Form POD basis and establish POD-based reduced-order FDEA
In this section, we first reconstruct the optimal orthonormal PODbasis from the elements
of the snapshots via SVD technique and POD-method, and then establish the POD-based
reduced-order FDEA with very few degrees of freedom and fully second-order accuracy
for the traffic flow LWR model.
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3.1 Form POD basis for snapshots
The set of snapshots {ρ l

i }Ll= (≤ i≤ I) can be used to constitute the following I×Lmatrix:

A =

⎛
⎜⎜⎜⎜⎝

ρ
 ρ

 · · · ρL


ρ
 ρ

 · · · ρL


...
...

. . .
...

ρ
I ρ

I · · · ρL
I

⎞
⎟⎟⎟⎟⎠ . ()

For the matrix A ∈ RI×L, we have the following SVD:

A = U

(
� 
 

)
YT , ()

whereU = (φ,φ, . . . ,φI) ∈ RI×I and Y = (ϕ,ϕ, . . . ,ϕL) ∈ RL×L consist of the orthonormal
eigenvectors of AAT and ATA, respectively, � = diag{σ,σ, . . . ,σ�} ∈ R�×� is the diagonal
matrix, and σi (i = , , . . . ,�) are the positive singular values corresponding to A in a non-
increasing order. They are connected to the eigenvalues of the matrices AAT and ATA in
a manner such that λi = σ 

i (i = , . . . ,�) and λ ≥ λ ≥ · · · ≥ λ�.
Since the number of spatial nodes is far larger than that of time nodes extracted, i.e.,

I � L, namely the order I for matrix AAT is far larger than the order L for matrix ATA,
however, their non-zero eigenvalues are identical. Thus, we may first find the eigenvalues
λj and the orthonormal eigenvectors ϕj (j = , , . . . ,�) corresponding to the matrix ATA,
and then by the relationship

φj =

σj
Aϕj, j = , , . . . ,�, ()

we may obtain the orthonormal eigenvectors φj (≤ j ≤ � ≤ L) corresponding to the non-
zero eigenvalues for matrix AAT .
Let

AM = U

(
�M 
 

)
YT ,

where the diagonal matrix �M = diag{σ,σ, . . . ,σM} ∈ RM×M consist of the first M main
singular values. Define the norm of the matrix A as ‖A‖, = supx

‖Ax‖
‖x‖ (where ‖ · ‖ is

the norm of a vector). According to the relationship properties of the spectral radius and
‖ · ‖, for the matrix, ifM < � = rankA (� ≤ L), we have

min
rank(B)≤M

‖A – B‖, = ‖A – AM‖, =
∥∥A –��TA

∥∥
, =

√
λM+, ()

where B ∈ RI×L, � = (φ,φ, . . . ,φM), and λM+ is (M + )th eigenvalue of the matric AAT .
It is shown that AM is an optimal representation of A and its error is

√
λM+.

Denote the L column vectors of matrix A by al = (ρ l
,ρ l

, . . . ,ρ l
m)T (l = , , . . . ,L) and εl

(l = , , . . . ,L) by unit column vectors except that the lth component is , while the other
components are . Then we have

∥∥al – alM
∥∥
 =

∥∥(
A –��TA

)
εl

∥∥
 ≤ ∥∥A –��TA

∥∥
,‖εl‖ =

√
λM+, ()
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where alM =
∑M

j=(φj,al)φj, (φj,al) is the canonical inner product for vectors φj and al .
Inequality () shows that alM are the optimal approximation to al and their errors are all√

λM+. Then � = (φ,φ, . . . ,φM) (M � L) is an orthonormal basis corresponding to A,
which is known as an orthonormal POD basis.

3.2 Establish the POD-based reduced-order FDEA for the traffic flow LWRmodel
In order to establish the POD-based reduced-order FDEA for the traffic flow LWRmodel,
it is necessary to introduce the following symbols:

ρn
I =

(
ρn
 ,ρ

n
 , . . . ,ρ

n
I
)T , αn

I =
(
αn
 ,α

n
 , . . . ,α

n
M

)T ,
ρ∗n
I =

(
ρ∗n
 ,ρ∗n

 , . . . ,ρ∗n
I

)T =�αn
I ,

()

and to rewrite () as the following iterative scheme:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρn+
i = ρn

i +�tum( –
ρni
ρm

) ρni+–ρ
n
i +ρni–

�x

– um�t( – ρni
ρm

) ρni+–ρni–
�x , ≤ i≤ I – , ≤ n ≤N – ,

ρ
i = ρ(xi), i = , , . . . , I,

ρn
 = ρ(, tn), ρn

J = ρ(J , tn), n = , , . . . ,N .

()

Thus, the first equation of () is rewritten as the following iterative scheme of vector form:

ρn+
I = ρn

I +Q
(
ρn
I
)
ρn
I , ≤ n≤N – , ()

where Q(ρn
I ) is a matrix determined by the second and third terms on the right hand of

the first equation in ().
If ρn

I (n = , , . . . ,L) in () are replaced for ρ∗n
I = (ρ∗n

 ,ρ∗n
 , . . . ,ρ∗n

I )T = ��Tρn
I , i.e.,

αn
I = �Tρn

I (n = , , . . . ,L) and ρn
I (n = L + ,L + , . . . ,N ) in () are replaced for ρ∗n

I =
(ρ∗n

 ,ρ∗n
 , . . . ,ρ∗n

I )T = �αn
I (n = L + ,L + , . . . ,N ), we obtain the following POD-based

reduced-order FDEA which only contains M degrees of freedom on every time level
(n > L):

{
αn
I =�Tρn

I , n = , , . . . ,L,
�αn+

I =�αn
I +Q(�αn

I )�αn
I , n = L,L + , . . . ,N – ,

()

where ρn
I (n = , , . . . ,L) is a given vector formed by the first L solutions in (). Since all

columns in � are orthonormal vectors, the second equation in () multiplied by �T is
reduced into the following POD-based reduced-order FDEA:

{
αn
I =�Tρn

I , n = , , . . . ,L,
αn+
I = αn

I +�TQ(�αn
I )�αn

I , n = L,L + , . . . ,N – .
()

After αn
I (n = , , . . . ,N ) are obtained from the system of (), the POD reduced-order

FDEA solutions for the traffic flow LWR model are presented as follows:

ρ∗n
I =

(
ρ∗n
 ,ρ∗n

 , . . . ,ρ∗n
I

)T =�αn
I , n = , , . . . ,N . ()
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Further, we can obtain the POD-based reduced-order FDEA solutions of the flow q and
the equilibrium speed u as follows, respectively:

q∗n
i = um

(
 –

ρ∗n
i

ρm

)
ρ∗n
i , u∗n

i = um
(
 –

ρ∗n
i

ρm

)
, i = , , . . . , I,n = , , . . . ,N . ()

Remark . The system of equations () or () has no repeating computation and is
different from the existing POD-based reduced-order numerical computational methods
(see, e.g., [–, –]) based on POD technique.

4 Error estimates of solutions and implementation for the POD-based
reduced-order FDEA

In this section, we devote our efforts to deriving the error estimates of solutions for the
POD-based reduced-order FDEA and the criterion of renewing POD basis and providing
the implementation for the POD-based reduced-order FDEA.

4.1 Error estimates of solutions for the POD-based reduced-order FDEA
It is obvious that the second equation in () has also the following form like ():

ρ∗n+
i = ρ∗n

i +�tum

(
 –

ρ∗n
i

ρm

)
ρ∗n
i+ – ρ∗n

i + ρ∗n
i–

�x
– um�t

(
 –

ρ∗n
i

ρm

)
ρ∗n
i+ – ρ∗n

i–
�x

,

i = , , . . . , I – ,n = L,L + , . . . ,N – , ()

whose stability condition is also �t ≤ �x/(um| – ρm|) (see [–]).
Let δ =�tum| – ρm|/�x, then, under the stability condition, we have δ ≤ . Further, the

second equation in () has the following form like ():

ρ∗n+
I = ρ∗n

I +Q
(
ρ∗n
I

)
ρ∗n
I , n = L,L + , . . . ,N – . ()

Put en = ρn
I – ρ∗n

I . It follows from () that

∥∥en∥∥ =
∥∥ρn

I – ρ∗n
I

∥∥
 =

∥∥ρn
I –��Tρn

I
∥∥
 ≤ √

λM+, n = , , . . . ,L. ()

Under the stability condition, with ()-(), (), and (), we have

∥∥en+∥∥ =
∥∥en +Q

(
ρn
I
)
ρn
I –Q

(
ρ∗n
I

)
ρ∗n
I

∥∥
 ≤ ( + δ)

∥∥en∥∥ ≤ · · ·
≤ ( + δ)n–L

∥∥eL∥∥ ≤ ( + δ)n–L
√

λM+, n = L,L + , . . . ,N – . ()

Combining () with () yields the following results.

Theorem . Under the stability condition �t ≤ �x/(um| – ρm|), we have the following
error estimates between the classical FDS solutions for the traffic flow LWR model and the
solutions of the POD-based reduced-order FDEA () and ():

∣∣ρn
I – ρ∗n

I
∣∣
 ≤ Cn(δ)

√
λM+, ≤ n ≤N , ()

where δ =�tum| – ρm|/�x, Cn(δ) =  (≤ n≤ L), and Cn(δ) = ( + δ)n–L (L ≤ n≤N ).

http://www.advancesindifferenceequations.com/content/2014/1/269
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Since the absolute value of each component for a vector is not more than its norm,
combining () with () yields the following results.

Theorem . Under the hypotheses of Theorem ., we have the following error estimates
between the accuracy solution for the traffic flow LWRmodel and the solutions of the POD-
based reduced-order FDEA () and ():

∣∣ρ(xi, tn) – ρ∗n
i

∣∣ =O
(
Cn(δ)

√
λM+,�x,�t

)
, ≤ i≤ I, ≤ n≤N . ()

Further, we have the following error estimates between the accuracy of the flow q and the
equilibrium speed u and the POD-based reduced-order FDEA solutions in ():

∣∣q(xi, tn) – q∗n
i

∣∣ + ∣∣u(xi, tn) – u∗n
i

∣∣
=O

(
Cn(δ)

√
λM+,�x,�t

)
, ≤ i≤ I, ≤ n≤N .

Remark . Due to POD-based reduced-order and extrapolation for the classical FDS,
the errors of solutions for the POD-based reduced-order FDEA in Theorem . include
factors Cn(δ)

√
λM+ ( ≤ n ≤ N ) more than those for the classical FDS, but the degrees

of freedom for the POD-based reduced-order FDEA are far less than those for the clas-
sical FDS so that the POD-based reduced-order FDEA can greatly lessen the trunca-
tion error accumulation in the computational process, alleviate the calculating load, save
time-consuming calculations, and improve the actual computational accuracy (see the
example in Section ). In particular, the error estimates of solutions for the POD-based
reduced-order FDEA give some suggestions for choosing number of POD basis, namely,
as long as we take M such that

√
λM+ = O(�t,�x). Cn(δ) = ( + δ)n–L in Theorem .

there is a suggestion for renewing the POD basis, namely, if Cn(δ)
√

λM+ >min(�t,�x)
(L +  ≤ n ≤ N ), the old POD basis is substituted with the new POD basis regenerated
from the new snapshots (ρ∗l

 ,ρ∗l
 , . . . ,ρ∗l

I ) (l = n – L,n – L – , . . . ,n – ).

4.2 Implementation for the POD-based reduced-order FDEA
The implementation for the POD-based reduced-order FDEA ()-() consists of the fol-
lowing five steps.
Step . For given time-step increment �t, spatial step increment �x, maximum (jam)

density ρm, maximum limited speed um, initial density ρ(x), and density ρ(x, t) on the
boundary, solving the following classical FDS at the first fewer L steps (as usual, we take
L = ):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρn+
i = ρn

i +�tum( –
ρni
ρm

) ρni+–ρ
n
i +ρni–

�x

– um�t( – ρni
ρm

) ρni+–ρni–
�x , i = , , . . . , I – ,n = , , . . . ,L – ,

ρ
i = ρ(xi), i = , , . . . , I,

ρn
 = ρ(, tn), ρn

J = ρ(J , tn), n = , , , . . . ,L,

one obtains the classical solutions ρn
i ( ≤ n ≤ L,  ≤ i ≤ I) of the density for the traffic

flow LWR model.
Step . Let A = (ρn

i )m×L. Solving the linear system of equation (ATA – λIL)ϕ = 0 one
obtains the eigenvalues λ ≥ λ ≥ · · · ≥ λ� >  (� = rankA) and corresponding eigenvectors
ϕj (j = , , . . . ,�).

http://www.advancesindifferenceequations.com/content/2014/1/269
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Step . For the error ε = max(�t,�x) needed, decide on the number M (M ≤ �) of
POD bases such that

√
λM+ ≤ ε, and construct POD bases � = (φ,φ, . . . ,φM) (where

φj = Aϕj/
√

λj, j = , , . . . ,M).
Step . Solving the following POD-based reduced-order FDEA:

⎧⎪⎨
⎪⎩

αn
I =�Tρn

I , n = , , . . . ,L,
αn+
I = αn

I +�TQ(�αn
I )�αn

I , n = L,L + , . . . ,N – ,
ρ∗n
I = (ρ∗n

 ,ρ∗n
 , . . . ,ρ∗n

I )T =�αn
I , n = , , . . . ,N ,

one obtains the POD-based reduced-order FDEA solution vectors ρ∗n
I = (ρ∗n

 ,ρ∗n
 , . . . ,ρ∗n

I ),
further, one obtains the POD-based reduced-order FDEA solutions q∗n

i = um( –
ρ∗n
i

ρm
)ρ∗n

i

and u∗n
i = um( –

ρ∗n
i

ρm
) (i = , , . . . , I , n = , , . . . ,N ) of the flow q and the equilibrium

speed u.
Step . Let δ = �tum| – ρm|/�x. If ( + δ)n–L

√
λM+ ≤ ε (L +  ≤ n ≤ N ), then

ρ∗n
I = (ρ∗n

 ,ρ∗n
 , . . . ,ρ∗n

I ) (n = , , . . . ,N ) are just solutions satisfying accuracy needed.
Else, namely, if ( + δ)n–L

√
λM+ > ε (L +  ≤ n ≤ N ), put (ρ l

,ρ l
, . . . ,ρ l

I) = (ρ∗l
 ,ρ∗l

 , . . . ,ρ∗l
I )

(l = n – L,n – L – , . . . ,n – ), and return to Step .

5 Some numerical experiments
In this section, we present two numerical experiments for the traffic flow LWR model to
validate the feasibility and efficiency of its POD-based reduced-order FDEA.

5.1 Example for traffic flow case 1
Let the total length of road be , m, the restricted maximum velocity um =  m/s,
the maximum (jam) density ρm = . veh/m (where veh/m denotes the mean number
of vehicles on each meter), the spatial step increment �x =  m, time-step increment
�t = /, h, ρ(x) = . veh/m, ρ(, t) = . veh/m, ρ(J , t) = . veh/m (which
is equivalent to the case that there is a traffic signal in the end of the road for restricting
traffic flow). Consider the traffic situation in total time T =  s. Thus, the number of
spatial nodes I = ,, the number of total time nodes N = ,.
We find the numerical solutions ρn

i (≤ i ≤ , and  ≤ n≤ ,) of the time-spatial
vehicle density distribution and the numerical solutions ρn

i ( ≤ i ≤ ,, n = ,) of
the road vehicle density distribution bymeans of the classical FDS (), depicted graphically
on the left charts in Figures  and , respectively.
Whenwe take L = , we obtain by computing that

√
λ ≤ ×–. Thus, we only chose

the first seven POD bases. When we use five steps in Section . to solve the POD-based
reduced-order FDEA () and (), it is only necessary to renew the POD basis once and
the POD-based reduced-order FDEA solutions of the time-spatial vehicle density distri-
bution and the road vehicle density distribution obtained from () and () are depicted
graphically on right charts in Figures  and , respectively. Every two charts in Figures 
and  are exhibiting quasi-identical similarity, respectively. Although the errors of the
POD-based reduced-order FDEA solutions on the starting time span are slightly larger
than those of the classical FDS solutions, since the POD-based reduced-order FDEA on
each time level includes only  degrees of freedom and the classical FDS has more than
, degrees of freedom, namely, the degrees of freedom for the POD-based reduced-
order FDEA are far fewer than those for classical FDS so that it could greatly lessen the
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Figure 1 The left and right charts are the classical FD solution and the POD-based reduced-order
FDEA solution of the time-spatial vehicle density distribution at t = 200 s, respectively.

Figure 2 The left and right charts are the classical FD solution and the POD-based reduced-order
FDEA solution of the road vehicle density distribution at t = 200 s, respectively.

Figure 3 The relative errors of classical FDS solution and the POD-based reduced-order FDEA solution
with seven POD bases on 0 ≤ t ≤ 200.

truncation error accumulation in the computational process, alleviate the calculating load,
save time-consuming calculations, and improve actual computational accuracy, after some
time span, the numerical errors of the POD-based reduced-order FDEA are fewer than
those of the classical FDS (see Figure ). Thus, the POD reduced-order FDEA solutions
are better and more stable than the classical FD solutions after a longer time.

5.2 Example for traffic flow case 2
Let still the total length of road be ,m, the restrictedmaximumvelocity um = m/s,
themaximum (jam) density ρm = . veh/m, the spatial step increment�x = m, the time-
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Figure 4 The left and right charts are the classical FD solution and the POD-based reduced-order
FDEA solution of the time-spatial vehicle density distribution at t = 200 s, respectively.

Figure 5 The left and right charts are the classical FD solution and the POD-based reduced-order
FDEA solution of the road vehicle density distribution at t = 200 s, respectively.

step increment �t = /, h, but let ρ(x) and ρ(x, t) be, respectively, as follows:

ρ(x) =

⎧⎪⎨
⎪⎩
. veh/m, ≤ x < ,,
. veh/m, x = ,,
. veh/m, , < x ≤ ,,

ρ(x, t) =

⎧⎪⎨
⎪⎩
. veh/m,  ≤ t ≤ ,x = ,
. veh/m, k –  ≤ t ≤ k,k = , , , , ,x = ,,
. veh/m, k –  ≤ t ≤ k,k = ,, , , ,x = ,.

This traffic situation is equivalent to the case that there is a traffic signal in the end of the
road for restricting traffic flow. Total time is still T =  s. Thus, the number of spatial
nodes I = ,, the number of total time nodes N = ,.
We find the numerical solutions ρn

i (≤ i ≤ , and  ≤ n≤ ,) of the time-spatial
vehicle density distribution and the numerical solutions ρn

i ( ≤ i ≤ ,, n = ,) of
the road vehicle density distribution bymeans of the classical FDS (), depicted graphically
on the left charts in Figures  and , respectively.
We also take L =  and the first seven POD bases. When we use the five steps in Sec-

tion . to solve the POD-based reduced-order FDEA () and (), it is only necessary to
renew the PODbasis once and the POD-based reduced-order FDEA solutions of the time-
spatial vehicle density distribution and the road vehicle density distribution are depicted
graphically on the right charts in Figures  and .
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Figure 6 The relative errors of classical FDS solution and the POD-based reduced-order
reduced-order FDEA solution with seven POD bases on 0 ≤ t ≤ 200.

Every two charts in Figures  and  also exhibit a quasi-identical similarity, respectively.
Although the errors of the POD-based reduced-order FDEA solutions on starting time
span are also slightly larger than those of the classical FDS solutions, since the POD-
based reduced-order FDEA on each time level also includes only  degrees of freedom
and the classical FDS has more than , degrees of freedom, that is, the degrees of free-
dom for the POD-based reduced-order FDEA are far fewer than those for classical FDS so
that it could greatly lessen the truncation error accumulation in the computational pro-
cess, alleviate the calculating load, save time-consuming calculations, and improve actual
computational accuracy, after some time span, the numerical errors of the POD-based
reduced-order FDEA are fewer than those of the classical FDS (see Figure ). Thus, the
POD reduced-order FDEA solutions are better and more stable than the classical FD so-
lutions after longer time.

6 Conclusions and discussions
In this paper, we have employed SVD-method and the POD-technique to generate the set
of the POD basis and to establish the POD-based reduced-order FDEA for the traffic flow
LWR model. We first compile ensembles of data from the first few L (L � N ) transient
solutions computing a system of equation derived with the classical FDS for the traffic
flow LWR model, while in actual applications, one may obtain the ensemble of snapshots
from real traffic flow by drawing samples. Next, we employ the SVD-method to deal with
ensembles of data obtaining the POD basis. Then the classical FDS solution vectors are
replaced with the linear combination of the most main POD basis to establish the POD-
based reduced-order FDEA for the traffic flow LWR model. Finally, we provide the error
estimates between the classical FD solutions and the POD-based reduced-order FDEA
solutions and the implementation for solving the POD-based reduced-order FDEA of the
traffic flow LWR model. Comparing the numerical computational results of the classi-
cal FDS with these of the POD-based reduced-order FDEA shows that the POD-based
reduced-order FDSEA is feasible and efficient for finding numerical solutions for the traf-
fic flow LWRmodel. It is shown that our present method has improved and innovated the
existing POD-based reduced-order methods (see, e.g., [–]).
The traffic flow LWR model may not be the best traffic flow model, but the method

of study and ideas here can be extended to other traffic flow models. The POD-based
reduced-order FDEA here is only an attempt to give an example for traffic flow problems.
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If the POD-based reduced-ordermethod is applied tomore complicated traffic flow prob-
lems and to establishing other nonlinear POD-based reduced-order schemes, that would
be very interesting, which is a challenging and problem for our future studies. Future work
in this area will aim to extend the FDEA, implementing it for a realistic and more compli-
cated traffic flow forecast system.
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