4,543 research outputs found

    Dynamic Adaptation on Non-Stationary Visual Domains

    Full text link
    Domain adaptation aims to learn models on a supervised source domain that perform well on an unsupervised target. Prior work has examined domain adaptation in the context of stationary domain shifts, i.e. static data sets. However, with large-scale or dynamic data sources, data from a defined domain is not usually available all at once. For instance, in a streaming data scenario, dataset statistics effectively become a function of time. We introduce a framework for adaptation over non-stationary distribution shifts applicable to large-scale and streaming data scenarios. The model is adapted sequentially over incoming unsupervised streaming data batches. This enables improvements over several batches without the need for any additionally annotated data. To demonstrate the effectiveness of our proposed framework, we modify associative domain adaptation to work well on source and target data batches with unequal class distributions. We apply our method to several adaptation benchmark datasets for classification and show improved classifier accuracy not only for the currently adapted batch, but also when applied on future stream batches. Furthermore, we show the applicability of our associative learning modifications to semantic segmentation, where we achieve competitive results

    The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites

    Get PDF
    Author name used in this publication: J. X. ZhangAuthor name used in this publication: J. Y. DaiAuthor name used in this publication: C. L. SunAuthor name used in this publication: C. Y. LoAuthor name used in this publication: S. W. OrAuthor name used in this publication: H. L. W. Chan2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Probing Lepton Flavor Violation Signal Induced by R-violating Minimal Supersymmetric Standard Model at a Linear Collider

    Full text link
    The lepton-flavor violation (LFV) effect at an e+ee^+e^- linear collider (LC), in the frame of R-parity violating minimal supersymmetric standard model is studied. We take the R-parity violating processes e+eeμ±e^+e^-\to e^{\mp}\mu^{\pm} as signal, and define the summation of the two processes as ``experiment'' observable. We find that the cross-section summation can reach O\cal{O}(101)fb(10^1)fb in the parameter space without sneutrino resonance effect(smν~\sqrt{s} \sim m_{\tilde{\nu}}). The summation treatment manifests uniform differential distribution on cosθ\cos\theta, where θ\theta denotes the polar angles of both outgoing e+/ee^+/e^- respectively to incoming electron beam in two signal processes. The uniform feature together with eμe\mu collinearity would help to reduce the SM background dramatically. Consequently we conclude that at a 500GeV500 GeV LC with 480fb1480 fb^{-1} annual luminosity, it's either possible to detect the distinctive R-violating LFV eμe\mu signal, or exclude sneutrino to mν~>1.1TeVm_{\tilde{\nu}}>1.1 TeV at 95% CL in the machine's biennial runtime interval.Comment: 14 pages, 9 figure

    Efficient degradation of triclosan by aluminium acetylacetonate doped polymeric carbon nitride photocatalyst under visible light

    Get PDF
    Triclosan (TCS), as a typical toxic and harmful micro-pollutant, has been frequently detected in various water bodies, and its threat to the aquatic environment has raised significant concerns. In this study, aluminium acetylacetonate doped polymeric carbon nitride photocatalysts (PCN-AA) were synthesized to investigate the degradation properties of TCS under simulated visible light. The results showed that the best ratio material PCN-AA30 (k = 0.0529 min-1) can degrade 99.29 % of TCS in 90 min, which is 2.45 times the degradation of the original polymeric carbon nitride material PCN-AA0 (k = 0.0216 min-1). The degradation process of TCS presented different rules under the changing conditions of catalyst dosage, initial concentration of TCS, pH, common inorganic anions and natural organic matter in water. The results of radicals quencher experiment showed that ·O2- played the most important role in the photocatalytic degradation in the reaction system. This study also identified 10 degradation products of TCS using UPLC-Q-TOF technology and proposed the possible degradation pathways. In addition, the acute biotoxicity of PCN-AA materials were tested by luminescent bacteria method, indicating that the safety of PCN-AA was relatively high. These results demonstrated that the polymeric carbon nitride material doped with aluminium acetylacetonate is a promising catalyst for the degradation of micro-pollutants in water under visible light

    Visual Person Understanding through Multi-Task and Multi-Dataset Learning

    Full text link
    We address the problem of learning a single model for person re-identification, attribute classification, body part segmentation, and pose estimation. With predictions for these tasks we gain a more holistic understanding of persons, which is valuable for many applications. This is a classical multi-task learning problem. However, no dataset exists that these tasks could be jointly learned from. Hence several datasets need to be combined during training, which in other contexts has often led to reduced performance in the past. We extensively evaluate how the different task and datasets influence each other and how different degrees of parameter sharing between the tasks affect performance. Our final model matches or outperforms its single-task counterparts without creating significant computational overhead, rendering it highly interesting for resource-constrained scenarios such as mobile robotics

    Modulation of human cardiac transient outward potassium current by EGFR tyrosine kinase and Src-family kinases

    Get PDF
    Aims: The human cardiac transient outward K + current Ito (encoded by Kv4.3 or KCND3) plays an important role in phase 1 rapid repolarization of cardiac action potentials in the heart. However, modulation of I to by intracellular signal transduction is not fully understood. The present study was therefore designed to determine whether/how human atrial I to and hKv4.3 channels stably expressed in HEK 293 cells are regulated by protein tyrosine kinases (PTKs). Methods and results: Whole-cell patch voltage-clamp, immunoprecipitation, western blotting, and site-directed mutagenesis approaches were employed in the present study. We found that human atrial I to was inhibited by the broad-spectrum PTK inhibitor genistein, the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556, and the Src-family kinases inhibitor PP2. The inhibitory effect was countered by the protein tyrosine phosphatase inhibitor orthovanadate. In HEK 293 cells stably expressing human KCND3, genistein, AG556, and PP2 significantly reduced the hKv4.3 current, and the reduction was antagonized by orthovanadate. Interestingly, orthovanadate also reversed the reduced tyrosine phosphorylation level of hKv4.3 channels by genistein, AG556, or PP2. Mutagenesis revealed that the hKv4.3 mutant Y136F lost the inhibitory response to AG556, while Y108F lost response to PP2. The double-mutant Y108FY136F hKv4.3 channels showed no response to either AG556 or PP2. Conclusion: Our results demonstrate that human atrial Ito and cloned hKv4.3 channels are modulated by EGFR kinase via phosphorylation of the Y136 residue and by Src-family kinases via phosphorylation of the Y108 residue; tyrosine phosphorylation of the channel may be involved in regulating cardiac electrophysiology. © The Author 2011.postprin

    Loss of APD1 in Yeast Confers Hydroxyurea Sensitivity Suppressed by Yap1p Transcription Factor

    Get PDF
    Ferredoxins are iron-sulfur proteins that play important roles in electron transport and redox homeostasis. Yeast Apd1p is a novel member of the family of thioredoxin-like ferredoxins. In this study, we characterized the hydroxyurea (HU)-hypersensitive phenotype of apd1Δ cells. HU is an inhibitor of DNA synthesis, a cellular stressor and an anticancer agent. Although the loss of APD1 did not influence cell proliferation or cell cycle progression, it resulted in HU sensitivity. This sensitivity was reverted in the presence of antioxidant N-acetyl-cysteine, implicating a role for intracellular redox. Mutation of the iron-binding motifs in Apd1p abrogated its ability to rescue HU sensitivity in apd1Δ cells. The iron-binding activity of Apd1p was verified by a color assay. By mass spectrometry two irons were found to be incorporated into one Apd1p protein molecule. Surprisingly, ribonucleotide reductase genes were not induced in apd1Δ cells and the HU sensitivity was unaffected when dNTP production was boosted. A suppressor screen was performed and the expression of stress-regulated transcription factor Yap1p was found to effectively rescue the HU sensitivity in apd1Δ cells. Taken together, our work identified Apd1p as a new ferredoxin which serves critical roles in cellular defense against HU.published_or_final_versio

    The effect of aspirin and eicosapentaenoic acid on urinary biomarkers of prostaglandin E2 synthesis and platelet activation in participants of the seAFOod polyp prevention trial

    Get PDF
    Urinary prostaglandin (PG) E metabolite (PGE-M) and 11-dehydro (d)-thromboxane (TX) B2 are biomarkers of cyclooxygenase-dependent prostanoid synthesis. We investigated (1) the effect of aspirin 300 mg daily and eicosapentaenoic acid (EPA) 2000 mg daily, alone and in combination, on urinary biomarker levels and, (2) whether urinary biomarker levels predicted colorectal polyp risk, during participation in the seAFOod polyp prevention trial. Urinary PGE-M and 11-d-TXB2 were measured by liquid chromatography-tandem mass spectrometry. The relationship between urinary biomarker levels and colorectal polyp outcomes was investigated using negative binomial (polyp number) and logistic (% with one or more polyps) regression models. Despite wide temporal variability in PGE-M and 11-d-TXB2 levels within individuals, both aspirin and, to a lesser extent, EPA decreased levels of both biomarkers (74% [P ≤.001] and 8% [P ≤.05] reduction in median 11-d-TXB2 values, respectively). In the placebo group, a high (quartile [Q] 2-4) baseline 11-d-TXB2 level predicted increased polyp number (incidence rate ratio [IRR] [95% CI] 2.26 [1.11,4.58]) and risk (odds ratio [95% CI] 3.56 [1.09,11.63]). A low (Q1) on-treatment 11-d-TXB2 level predicted reduced colorectal polyp number compared to placebo (IRR 0.34 [0.12,0.93] for combination aspirin and EPA treatment) compared to high on-treatment 11-d-TXB2 values (0.61 [0.34,1.11]). Aspirin and EPA both inhibit PGE-M and 11-d-TXB2 synthesis in keeping with shared in vivo cyclooxygenase inhibition. Colorectal polyp risk and treatment response prediction by 11-d-TXB2 is consistent with a role for platelet activation during early colorectal carcinogenesis. The use of urinary 11-d-TXB2 measurement for a precision approach to colorectal cancer risk prediction and chemoprevention requires prospective evaluation
    corecore