139 research outputs found
Cascaded Scene Flow Prediction using Semantic Segmentation
Given two consecutive frames from a pair of stereo cameras, 3D scene flow
methods simultaneously estimate the 3D geometry and motion of the observed
scene. Many existing approaches use superpixels for regularization, but may
predict inconsistent shapes and motions inside rigidly moving objects. We
instead assume that scenes consist of foreground objects rigidly moving in
front of a static background, and use semantic cues to produce pixel-accurate
scene flow estimates. Our cascaded classification framework accurately models
3D scenes by iteratively refining semantic segmentation masks, stereo
correspondences, 3D rigid motion estimates, and optical flow fields. We
evaluate our method on the challenging KITTI autonomous driving benchmark, and
show that accounting for the motion of segmented vehicles leads to
state-of-the-art performance.Comment: International Conference on 3D Vision (3DV), 2017 (oral presentation
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
We present a compact but effective CNN model for optical flow, called
PWC-Net. PWC-Net has been designed according to simple and well-established
principles: pyramidal processing, warping, and the use of a cost volume. Cast
in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow
estimate to warp the CNN features of the second image. It then uses the warped
features and features of the first image to construct a cost volume, which is
processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in
size and easier to train than the recent FlowNet2 model. Moreover, it
outperforms all published optical flow methods on the MPI Sintel final pass and
KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436)
images. Our models are available on https://github.com/NVlabs/PWC-Net.Comment: CVPR 2018 camera ready version (with github link to Caffe and PyTorch
code
A Fusion Approach for Multi-Frame Optical Flow Estimation
To date, top-performing optical flow estimation methods only take pairs of
consecutive frames into account. While elegant and appealing, the idea of using
more than two frames has not yet produced state-of-the-art results. We present
a simple, yet effective fusion approach for multi-frame optical flow that
benefits from longer-term temporal cues. Our method first warps the optical
flow from previous frames to the current, thereby yielding multiple plausible
estimates. It then fuses the complementary information carried by these
estimates into a new optical flow field. At the time of writing, our method
ranks first among published results in the MPI Sintel and KITTI 2015
benchmarks. Our models will be available on https://github.com/NVlabs/PWC-Net.Comment: Work accepted at IEEE Winter Conference on Applications of Computer
Vision (WACV 2019
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation
We address the unsupervised learning of several interconnected problems in
low-level vision: single view depth prediction, camera motion estimation,
optical flow, and segmentation of a video into the static scene and moving
regions. Our key insight is that these four fundamental vision problems are
coupled through geometric constraints. Consequently, learning to solve them
together simplifies the problem because the solutions can reinforce each other.
We go beyond previous work by exploiting geometry more explicitly and
segmenting the scene into static and moving regions. To that end, we introduce
Competitive Collaboration, a framework that facilitates the coordinated
training of multiple specialized neural networks to solve complex problems.
Competitive Collaboration works much like expectation-maximization, but with
neural networks that act as both competitors to explain pixels that correspond
to static or moving regions, and as collaborators through a moderator that
assigns pixels to be either static or independently moving. Our novel method
integrates all these problems in a common framework and simultaneously reasons
about the segmentation of the scene into moving objects and the static
background, the camera motion, depth of the static scene structure, and the
optical flow of moving objects. Our model is trained without any supervision
and achieves state-of-the-art performance among joint unsupervised methods on
all sub-problems.Comment: CVPR 201
- …