24 research outputs found

    In vitro and in vivo evaluation of human adenovirus type 49 as a vector for therapeutic applications

    Get PDF
    The human adenovirus phylogenetic tree is split across seven species (Aā€“G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-exist-ing immunity detected across screened populations. However, many aspects of the basic virology of species Dā€”such as their cellular tropism, receptor usage, and in vivo biodistribution profileā€” remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)ā€”a rela-tively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications

    CRAFT (Cerclage after full dilatation caesarean section): protocol of a mixed methods study investigating the role of previous in-labour caesarean section in preterm birth risk

    Get PDF
    BACKGROUND: Full dilatation caesarean sections are associated with recurrent early spontaneous preterm birth and late miscarriage. The risk following first stage caesarean sections, are less well defined, but appears to be increased in late-first stage of labour. The mechanism for this increased risk of late miscarriage and early spontaneous preterm birth in these women is unknown and there are uncertainties with regards to clinical management. Current predictive models of preterm birth (based on transvaginal ultrasound and quantitative fetal fibronectin) have not been validated in these women and it is unknown whether the threshold to define a short cervix (ā‰¤25ā€‰mm) is reliable in predicting the risk of preterm birth. In addition the efficacy of standard treatments or whether benefit may be derived from prophylactic interventions such as a cervical cerclage is unknown. METHODS: There are three distinct components to the CRAFT project (CRAFT-OBS, CRAFT-RCT and CRAFT-IMG). CRAFT-OBS: Observational Study; To evaluate subsequent pregnancy risk of preterm birth in women with a prior caesarean section in established labour. This prospective study of cervical length and quantitative fetal fibronectin data will establish a predictive model of preterm birth. CRAFT-RCT: Randomised controlled trial arm; To assess treatment for short cervix in women at high risk of preterm birth following a fully dilated caesarean section. CRAFT-IMG: Imaging sub-study; To evaluate the use of MRI and transvaginal ultrasound imaging of micro and macrostructural cervical features which may predispose to preterm birth in women with a previous fully dilated caesarean section, such as scar position and niche. DISCUSSION: The CRAFT project will quantify the risk of preterm birth or late miscarriage in women with previous in-labour caesarean section, define the best management and shed light on pathological mechanisms so as to improve the care we offer to women and their babies. TRIAL REGISTRATION: CRAFT was prospectively registered on 25th November 2019 with the ISRCTN registry ( https://doi.org/10.1186/ISRCTN15068651 )

    Cervical gene delivery of the antimicrobial peptide, Human Ī²ā€defensin (HBD)-3, in a mouse model of ascending infection-related preterm birth

    Get PDF
    Approximately 40% of preterm births are preceded by microbial invasion of the intrauterine space; ascent from the vagina being the most common pathway. Within the cervical canal, antimicrobial peptides and proteins (AMPs) are important components of the cervical barrier which help to prevent ascending vaginal infection. We investigated whether expression of the AMP, human Ī²-defensin-3 (HBD3), in the cervical mucosa of pregnant mice could prevent bacterial ascent from the vagina into the uterine cavity. An adeno-associated virus vector containing both the HBD3 gene and GFP transgene (AAV8 HBD3.GFP) or control AAV8 GFP, was administered intravaginally into E13.5 pregnant mice. Ascending infection was induced at E16.5 using bioluminescent Escherichia coli (E. coli K1 A192PP-lux2). Bioluminescence imaging showed bacterial ascent into the uterine cavity, inflammatory events that led to premature delivery and a reduction in pups born alive, compared with uninfected controls. Interestingly, a significant reduction in uterine bioluminescence in the AAV8 HBD3.GFP-treated mice was observed 24 h post-E. coli infection, compared to AAV8 GFP treated mice, signifying reduced bacterial ascent in AAV8 HBD3.GFP-treated mice. Furthermore, there was a significant increase in the number of living pups in AAV HBD3.GFP-treated mice. We propose that HBD3 may be a potential candidate for augmenting cervical innate immunity to prevent ascending infection-related preterm birth and its associated neonatal consequences

    In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications

    Get PDF
    The human adenovirus phylogenetic tree is split across seven species (Aā€“G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species Dā€”such as their cellular tropism, receptor usage, and in vivo biodistribution profileā€”remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)ā€”a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications

    Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors

    Get PDF
    Ā© 2020, The Author(s). We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFĪŗB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFĪŗB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFĪŗB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models

    Ascending Vaginal Infection Using Bioluminescent Bacteria Evokes Intrauterine Inflammation, Preterm Birth and Neonatal Brain Injury in Pregnant Mice

    Get PDF
    Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of age. At least 40% of cases are associated with infection. The most common way for pathogens to access the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12 MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-buffered saline controls. However, in both groups of viable pups born after bacterial inoculation, there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic inflammation in neonates

    Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors

    Get PDF

    Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism

    Get PDF
    Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFĪ±-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-Ī¼ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS

    Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer

    Get PDF
    Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases
    corecore