1,263 research outputs found

    The volatility spillover effect of the European Union (EU) carbon financial market

    Get PDF
    Acknowledgements The authors acknowledge the valuable comments and suggestions provided by our colleagues. The authors are grateful to the anonymous reviewers, whose comments have helped us improve the manuscript. Funding This research is partially funded by the National Natural Science Foundation of China (71473010), Capacity Building of Science and Technology Innovation Services (Research Category) in 2019ā€”Beijing Basic Research Business Expenses in Beijing University of Technology (011000546320503) and (011000546320532). Data availability The Data availability come from Table A1. Data source.Peer reviewedPostprin

    Chiral symmetry analysis and rigid rotational invariance for the lattice dynamics of single-wall carbon nanotubes

    Full text link
    In this paper, we provide a detailed expression of the vibrational potential for the lattice dynamics of the single-wall carbon nanotubes (SWCNT) satisfying the requirements of the exact rigid translational as well as rotational symmetries, which is a nontrivial generalization of the valence force model for the planar graphene sheet. With the model, the low frequency behavior of the dispersion of the acoustic modes as well as the flexure mode can be precisely calculated. Based upon a comprehensive chiral symmetry analysis, the calculated mode frequencies (including all the Raman and infrared active modes), velocities of acoustic modes and the polarization vectors are systematically fitted in terms of the chiral angle and radius, where the restrictions of various symmetry operations of the SWCNT are fulfilled

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio

    A lattice dynamical treatment for the total potential energy of single-walled carbon nanotubes and its applications: relaxed equilibrium structure, elastic properties, and vibrational modes of ultra-narrow tubes

    Full text link
    In this paper, we proposed a lattice dynamic treatment for the total potential energy for single-walled carbon nanotubes (SWCNT's) which is, apart from a parameter for the non-linear effects, extracted from the vibrational energy of the planar graphene sheet. Based upon the proposal, we investigated systematically the relaxed lattice configuration for narrow SWCNT's, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties respected to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. Particularly, we verified that the relaxation effect brings the bond length longer and the frequencies of various optical vibrational modes softer; Our calculation provides the evidence that the Young's modulus of armchair tube exceeds that of the planar graphene sheet, and the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of the graphite; The calculated radial breathing modes for the ultra narrow tubes with diameter range between 0.2 - 0.5 nm coincide the experimental results and the existing {\it ab initio} calculations with satisfaction; For narrow tubes of diameter 2 nm, the calculated frequencies of optical modes in tubule tangential plane as well as those of radial breathing modes are also in good agreement with the experimental measurement. In addition, our calculation shows that various physical quantities of relaxed SWCNT's can actually be expanded in terms of the chiral angle defined for the correspondent ideal SWCNT's.Comment: 9 pages, 7 figure

    Investment efficiency of the new energy industry in China

    Get PDF
    This paper evaluates the investment efficiency of the new energy industry in China and investigates factors that explain variations in investment efficiency across firms and over time. Applying a four-stage semi-parametric DEA analysis framework to a sample of listed new energy firms over the period 2012-2015, we find that the overall investment efficiency of the new energy industry is relatively low, with an average total technical efficiency of 44%, pure technical efficiency of 48%, and scale efficiency of 90%. We also find that new energy firmsā€™ investment efficiency is affected by both macroeconomic conditions and firm-specific characteristics. Our results are robust and have significant implications for policy makers and firm managers

    Contrasting effects on deep convective clouds by different types of aerosols

    Get PDF
    Convective clouds produce a significant proportion of the global precipitation and play an important role in the energy and water cycles. We quantify changes of the convective cloud ice mass-weighted altitude centroid (Z_(IWC)) as a function of aerosol optical thickness (AOT). Analyses are conducted in smoke, dust and polluted continental aerosol environments over South America, Central Africa and Southeast Asia, using the latest measurements from the CloudSat and CALIPSO satellites. We find aerosols can inhibit or invigorate convection, depending on aerosol type and concentration. On average, smoke tends to suppress convection and results in lower Z_(IWC) than clean clouds. Polluted continental aerosol tends to invigorate convection and promote higher Z_(IWC). The dust aerosol effects are regionally dependent and their signs differ from place to place. Moreover, we find that the aerosol inhibition or invigoration effects do not vary monotonically with AOT and the variations depend strongly on aerosol type. Our observational findings indicate that aerosol type is one of the key factors in determining the aerosol effects on convective clouds
    • ā€¦
    corecore