307 research outputs found

    New 2012 Precipitation Frequency Estimation Analysis for Alaska: Musings on Data Used and the Final Product

    Get PDF
    INE/AUTC 13.1

    Using Snow Fences to Augment Fresh Water Supplies in Shallow Arctic Lakes

    Get PDF
    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska’s oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009, 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the “baseline” conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake’s hydrological response to snowdrift melt, and cost assessment of snowdrift‐generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open‐water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21–29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, “North Slope Decision Support System (NSDSS) for Water Resources Planning and Management.” The results of these projects were implemented in the NSDSS model and added to the annual water budget. This implementation allows one to account for snowdrift contributions during ice road planning with the NSDSS and assists with mitigating those risks associated with potentially unfavorable climate and hydrological conditions (that is, surface storage deficit and/or low precipitation).Disclaimer 3 Acknowledgments 4 Abstract 5 Executive Summary 6 Report Details 9 Experimental methods 10 Location of the experimental site 10 Land use permits 11 Hydrological and meteorological data collection 11 Snow fence design and location 12 Results and discussion 16 Snow transport and drift growth 16 Snowdrift melt 18 Precipitation and evaporation 20 Hydrological response of the lake 23 Water cost 27 North Slope Decision Support System 27 Conclusions 28 Graphical Material List 29 References 30 List of Acronyms and Abbreviations 3

    The role of magnesium and thyroid function in early pregnancy after in-vitro fertilization (IVF): New aspects in endocrine physiology

    Get PDF
    AbstractBackgroundThe initiation of a pregnancy is a process that requires adequate energetic support. Recent observations at our Institution suggest a central role of magnesium in this situation. The aim of this study was to evaluate magnesium, zinc, selenium and thyroid function as well as anti-MĂŒllerian hormone in early pregnancy following in-vitro fertilization as compared to spontaneous successful pregnancies.ResultsA successful outcome of pregnancy after IVF treatment was associated with 2 parameters: higher levels of anti-MĂŒllerian hormone as well as higher levels of magnesium in the pre-stimulation blood sample. These two parameters, however, showed no correlation. Spontaneous pregnancies as well as pregnancies after IVF show a fall of magnesium levels at 2–3 weeks of gestation. This drop of magnesium concentration is larger following IVF as compared to spontaneous pregnancies. Parallel to these changes TSH levels showed an increase in early IVF-pregnancy. At this time point we also observed a positive correlation between fT4 and TSH. This was not observed in spontaneous pregnancies. Thyroid antibodies showed no correlation to outcomes.ConclusionsIn connection with the initiation of pregnancy following ovarian stimulation dynamic changes of magnesium and TSH levels can be observed. A positive correlation was found between fT4 and TSH in IVF pregnancies. In spontaneous pregnancies smaller increases of TSH levels are related to higher magnesium levels.General significanceWe propose that magnesium plays a role in early pregnancy as well as in pregnancy success independently from anti-MĂŒllerian hormone. Neither thyroid hormones nor thyroid antibodies were related to outcome

    Snow Survey Results for the Central Alaskan Arctic, Arctic Circle to Arctic Ocean: Spring 2013

    Get PDF
    Many remote areas of Alaska lack meteorological data; this is especially true for solid precipitation. Researchers at the University of Alaska Fairbanks, Water and Environmental Research Center have been collecting end-of-winter snow cover observations (depth, density, snow water equivalent and ablation) since the year 2000. These observations do not document the total snowfall during the winter, but provide quantitative estimate of cold season precipitation on the ground at winter’s end after sublimation and redistribution by wind. This report provides summary of snow cover data collected during cold season of 2012–2013. There are two main areas of study. One includes drainage areas of the western Sagavanirktok, Kuparuk, Itkillik, Anaktuvuk and Chandler Rivers located north of the continental divide in the Brooks Range. While the number of sites has varied each year, we visited 76 sites in April of 2013 on the North Slope of Alaska. Second study area was established in 2012 in the drainage areas of the Kogoluktuk, Mauneluk, Reed, Alatna, and Koyukuk Rivers south of the Brooks Range. Fifty seven new snow survey sites were visited south of the Brooks Range in April 2013. The cold season of 2012-2013 experienced heavy snowfalls (record amounts since 2000) north of the Brooks Range. This was the first year of data collection south of the Brooks Range, thus no comparison can be made. SWE averaged over entire study area was 13.1 cm in 2013, ranging from 1.2 cm to 35.2 cm. Generally, higher SWEs were found in the western portion of the study area. Ablation was later than normal in spring 2013. Ablation window extended from May 8, 2013 in the far south of the study area to middle June at higher elevations on the north side of the Brooks Range.LIST OF FIGURES ....................................................................................................................... iii LIST OF TABLES ........................................................................................................................ vii DISCLAIMER ............................................................................................................................. viii UNITS, ABBREVIATIONS, AND SYMBOLS ........................................................................... ix ACKNOWLEDGMENTS ...............................................................................................................x ABSTRACT ................................................................................................................................... xi 1. INTRODUCTION .......................................................................................................................1 2. STUDY AREA ............................................................................................................................3 3. SAMPLING METHODS .............................................................................................................5 3.1 Snow Survey ..........................................................................................................................5 3.2 Snow Ablation .......................................................................................................................6 3.2.1 Observations from 1985 to 2012 .................................................................................... 8 3.2.2 Observations from 2013 ................................................................................................. 9 3.3 Snow Depth Sensors ............................................................................................................10 4. ACCURACY OF OBSERVATIONS ........................................................................................12 4.1 Snow Water Equivalent .......................................................................................................12 4.2 Snow Depth Sensors ............................................................................................................13 5. SPATIAL DISTRIBUTION OF SNOW SURVEY SITES.......................................................15 6. SNOW SURVEY DATA AT WATERSHED SCALE .............................................................18 7. SONIC SNOW DEPTH DATA .................................................................................................25 7.1 North of the Brooks Range Divide ......................................................................................25 7.2 South of the Brooks Range Divide ......................................................................................50 8. SURFACE WEATHER ANALYSIS ........................................................................................62 9. SWE CORRECTIONS ..............................................................................................................66 9.1 Snow Depth Increase in the Umiat Study Area ...................................................................66 9.2 Snow Depth Increase in the Ambler Study Area .................................................................67 10. ABLATION DATA .................................................................................................................68 11. SUMMARY .............................................................................................................................71 12. REFERENCES ........................................................................................................................73 APPENDIX A. Snow survey data .................................................................................................75 Appendix A1. Measured snow survey data for the Umiat Study Area, April 18-24, 2013. ...................................................................................................................................... 76 Appendix A2. Adjustment of the snow water equivalent for the Umiat Study Area, spring 2013. ........................................................................................................................... 78 Appendix A3. Measured Snow Survey Data for the Ambler Study Area, April 3‐9, 2013. ...................................................................................................................................... 80 Appendix A4. Adjustment of the snow water equivalent data for the Ambler Study Area, spring 2013. ................................................................................................................. 82 APPENDIX B. Ablation data ........................................................................................................84 Appendix B1a. Snow water equivalent (cm) in the Imnavait Creek basin 85-99 (basin average). ..................................................................................................................... 84 Appendix B1b. Snow water equivalent (cm) in the Imnavait Creek basin 00-13 (basin average). ..................................................................................................................... 85 Appendix B2. Snow water equivalent (cm) at the Upper Kuparuk (UK) site. ..................... 86 Appendix B3. Snow water equivalent (cm) at the Happy Valley (HV) site. ........................ 87 Appendix B4. Snow water equivalent (cm) at the Sagwon (SH) site. .................................. 89 Appendix B5. Snow water equivalent (cm) at the Franklin Bluffs (FR) site........................ 90 Appendix B6. Snow water equivalent (cm) at the Betty Pingo (BP) site. ............................ 92 Appendix B7. Snow water equivalent (cm) at the West Dock (WD) site. ........................... 93 Appendix B8. 2010 Snow water equivalent (cm) at the Atigun, Galbraith Lake and Oil Spill Hill sites. ................................................................................................................. 94 Appendix B9. 2011 and 2013 snow water equivalent (cm) at the Anaktuvuk River, Chandler River, Upper Itkilik River and Lower Itkillik meteorological sites. ..................... 95 Appendix B10. 2013 snow water equivalent (cm) at the Ambler Road Corridor project meteorological sites. ................................................................................................. 9

    Standard Operating Procedure and Workplan for the Terrestrial Environmental Observation Network (TEON) – Arctic Landscape Conservation Cooperative: Kuparuk River Basin and Adjacent Catchments

    Get PDF
    TABLE OF CONTENTS ................................................................................................................. i DISCLAIMER ................................................................................................................................ ii CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS AND SYMBOLS .............................................. iii 1 INTRODUCTION .................................................................................................................. 1 2 STATION HISTORY ............................................................................................................. 5 3 DATA COLLECTION METHODS ....................................................................................... 8 3.1 Air Temperature and Relative Humidity ........................................................................ 12 3.2 Wind Speed and Direction ............................................................................................. 14 3.3 Radiation ........................................................................................................................ 15 3.3.1 Net Radiation .......................................................................................................... 15 3.3.2 Shortwave Radiation ............................................................................................... 16 3.3.3 Longwave Radiation ............................................................................................... 17 3.4 Summer Precipitation ..................................................................................................... 18 3.5 Snow Depth .................................................................................................................... 18 3.6 Field Snow Survey ......................................................................................................... 20 3.7 Water Levels .................................................................................................................. 21 3.8 Discharge Measurements ............................................................................................... 23 3.8.1 Acoustic Doppler Current Profiler .......................................................................... 25 4 STATION TELEMETRY ..................................................................................................... 28 5 DATALOGGER PROGRAM .............................................................................................. 30 6 METADATA ........................................................................................................................ 31 7 QUALITY CONTROL AND DATA PROCESSING .......................................................... 32 8 DATA REPORTING AND ARCHIVING ........................................................................... 33 9 REFERENCES ..................................................................................................................... 36 10 APPENDIX LIST ................................................................................................................. 3

    Proceedings 19th International Northern Research Basins Symposium and Workshop Southcentral Alaska, USA – August 11–17, 2013

    Get PDF
    Preface .......................................................... i Symposium Organizing Committee ................................................ iii List of Participants ........................................................... ix Symposium Papers ............................................................................................1 Hydrologic Connectivity and Dissolved Organic Carbon Fluxes in Low-Gradient High Arctic Wetland Ponds, Polar Bear Pass, Bathurst Island, Canada Abnizova, A., Young, K.L., and LafreniĂšre, M.J. ........................................................3 Spatial and Temporal Variation in the Spring Freshet of Major Circumpolar Arctic River Systems: A CROCWR Component Ahmed, R., Prowse, T.D., Dibike, Y.B., and Bonsal, B.R. ...............................................15 The Features of Suspended Sediment Yield in Rivers in Kamchatka, Far East Russia Alekseevsky, N.I., and Kuksina, L.V. ...........................................................................25 Kenai Peninsula Precipitation and Air Temperature Trend Analysis Bauret, S., and Stuefer, S.L. ........................................................................................35 An Analysis of Spatial and Temporal Trends and Patterns in Western Canadian Runoff: A CROCWR Component Bawden, A.J., Burn, D.H., and Prowse, T.D. ................................................................45 Historical Changes and Future Projections of Extreme Hydroclimate Events in Interior Alaska Watersheds Bennett, K.E., Cannon, A., and Hinzman, L. ...............................................................57 Linking North Slope Climate, Hydrology, and Fish Migration Betts, E.D., and Kane, D.L. .........................................................................................69 Input of Dissolved Organic Carbon for Typical Lakes in Tundra Based on Field Data of the Expedition Lena – 2012 Bobrova, O., Fedorova, I., Chetverova, A., Runkle, B., and Potapova, T. ...................77 Predicting Snow Density Bruland, O., FĂŠrevĂ„g, Å., Steinsland, I., and Sand, K. ............................................83 Arctic Snow Distribution Patterns at the Watershed Scale Homan, J.W., and Kane, D.L. ....................................................................................95 Modeling Groundwater Upwelling as a Control on River Ice Thickness Jones, C., Kielland, K., and Hinzman, L. .......................................................107 Challenges of Precipitation Data Collection in Alaska Kane, D.L., and Stuefer, S.L. ............................................................................. 117 Water Temperature Variations in Two Finnish Lakes (Kallavesi and Inari) in 1981–2010 Korhonen, J. ..........................................................................................................127 Spatiotemporal Trends in Climatic Variables Affecting Streamflow Across Western Canada from 1950–2010: A CROCWR Component Linton, H., Prowse, T., Dibike, Y., and Bonsal, B. ......................................................137 Scaling Runoff from Large to Small Catchments – Comparison of Theoretical Results with Measurements Marchand, W.D., and Vaskinn, K. ................................................................................149 Sediment Transport to the Kangerlussuaq Fjord, West Greenland Mikkelsen, A., and Hasholt, B. ....................................................................................157 Synoptic Climatological Characteristics Associated with Water Availability in Western Canada: A CROCWR Component Newton, B.W., Prowse, T.D., and Bonsal, B.R. ..........................................................167 Winter Streamflow Generation in a Subarctic Precambrian Shield Catchment Spence, C., Kokelj, S.A., Kokelj, S.V., and Hedstrom, N. ...........................................179 Water Balance Calculation over Surface Water Storage in the Dry Interior Climate of the Athabasca River Region in Western Canada: A CROCWR Component Walker, G.S., Prowse, T.D., Dibike, Y.B., and Bonsal, B.R. ..........................................189 Forest Disturbance Effects on Snow and Water Yield in South-Central British Columbia Winkler, R., Spittlehouse, D., Boon, S., and Zimonick, B. .........................................201 Ecohydrology of Boreal Forests: The Role of Water Content Young (formerly Cable), J.M., and Bolton, W.R. ........................................................213 Seasonal Stream Regimes and Water Budgets of Hillslope Catchments, Polar Bear Pass and Cape Bounty, Nunavut Young, K.L., LafreniĂšre, M.J., Lamoureux, S., Abnizova, A., and Miller, E.A. ............217 Symposium Abstracts ................................................................................................231 River Flow Transformation Processes in the Lena River Delta, Russia Alekseevsky, N.I., Aibulatov, D.N., Kuksina, L.V., and Chetverova, A.A. ..................233 Hydrological Analysis of Catchments in the National Petroleum Reserve – Alaska Prior to Petroleum Development Arp, C.D., and Whitman, M. ......................................................................................234 Macrodispersion of Groundwater Contaminants in Discontinuous Permafrost Barnes, M.L., and Barnes, D.L. ................................................................................235 Arctic Water Change: Limitations and Opportunities for Its Detection and Predictability Destouni, G. ..............................................................................................................236 Response of Water Bodies in the Northwest Part of Russia to Climate Changes and Anthropogenic Impacts Filatov, N.N., Efremova, T.V., Georgiev, A.P., Nazarova, L.E., Pal’shin, N.I., and Rukhovets, L.A. ......................................................................................................237 The Interaction of Atmospheric, Hydrologic, Geomorphic, and Ecosystem Processes on the Arctic Coastal Plain Hinzman, L.D., Wilson, C.J., Rowland, J.C., Hubbard, S.S., Torn, M.S., Riley, W.J., Wullschleger, S.D., Graham, D.E., Liang, L., Norby, R.J., Thornton, P.E., and Rogers, A. ...............................................................................................238 Sensitivity of Yukon Hydrologic Response to Climate Warming: A Case Study for Community and Sectoral Climate Change Adaptation Janowicz, J.R., Pomeroy, J.W., and Carey, S. ..........................................................240 Thermokarst Lake Change in Western Siberia: From Spatiotemporal Landscape Dynamics to Hydrological Reflections Karlsson, J.M., Lyon, S.W., and Destouni, G. ............................................................241 An Assessment of Suspended Sediment Transport in Arctic Alaska Rivers Lamb, E., Toniolo, H., Kane, D., and Schnabel, W. ....................................................242 Greenland Freshwater Runoff. Part I: A Runoff Routing Model for Glaciated and Nonglaciated Landscapes (HydroFlow) Liston, G.E., and Mernild, S.H. .................................................................................243 Interactions between Vegetation, Snow, and Permafrost Active Layer Marsh, P., Shi, X., Endrizzi, S., Baltzer, J., and Lantz, T. ...........................................244 Greenland Freshwater Runoff. Part II: Distribution and Trends, 1960–2010 Mernild, S.H., and Liston, G.E. ..................................................................................245 Climatic Redistribution of Canada’s Western Water Resources (CROCWR) Prowse, T.D., Bonsal, B.R., Burn, D.H., Dibike, Y.B., Edwards, T., Ahmed, R., Bawden, A.J., Linton, H.C., Newton, B.W., and Walker, G.S. ................................................246 Permafrost Thaw Induced Changes to Surface Water Systems: Implications for Streamflow Quinton, W.L., and Baltzer, J.L. ................................................................................247 The Ecohydrology of Thawing Permafrost Plateaus Quinton, W.L., and Baltzer, J.L. ................................................................................248 Meteorology for Hydropower Production Scheduling Sand, K., and Nordeng, T.E. .....................................................................................249 Delineation of Snow Patterns in Northern Alaska Wagner, A.M., Hiemstra, C.A., and Sturm, M. ............................................................250 Winter Low Flow in the Mackenzie River Basin Woo, M., and Thorne, R. ............................................................................................25

    Hydrology and Meteorology of the Central Alaskan Arctic: Data Collection and Analysis

    Get PDF
    The availability of environmental data for unpopulated areas of Alaska can best be described as sparse; however, these areas have resource development potential. The central Alaskan Arctic region north of the Brooks Range (referred to as the North Slope) is no exception in terms of both environmental data and resource potential. This area was the focus of considerable oil/gas exploration immediately following World War II. Unfortunately, very little environmental data were collected in parallel with the exploration. Soon after the oil discovery at Prudhoe Bay in November 1968, the U.S. Geological Survey (USGS) started collecting discharge data at three sites in the neighborhood of Prudhoe Bay and one small watershed near Barrow. However, little complementary meteorological data (like precipitation) were collected to support the streamflow observations. In 1985, through a series of funded research projects, researchers at the University of Alaska Fairbanks (UAF), Water and Environmental Research Center (WERC), began installing meteorological stations on the North Slope in the central Alaskan Arctic. The number of stations installed ranged from 1 in 1985 to 3 in 1986, 12 in 1996, 24 in 2006, 23 in 2010, and 7 in 2014. Researchers from WERC also collected hydrological data at the following streams: Imnavait Creek (1985 to present), Upper Kuparuk River (1993 to present), Putuligayuk River (1999 to present, earlier gauged by USGS), Kadleroshilik River (2006 to 2010), Shaviovik River (2006 to 2010), No Name River (2006 to 2010), Chandler River (2009 to 2013), Anaktuvuk River (2009 to 2013), Lower Itkillik River (2012 to 2013), and Upper Itkillik River (2009 to 2013). These catchments vary in size, and runoff generation can emanate from the coastal plain, the foothills or mountains, or any combination of these locations. Snowmelt runoff in late May/early June is the most significant hydrological event of the year, except at small watersheds. For these watersheds, rain/mixed snow events in July and August have produced the floods of record. Ice jams are a major concern, especially in the larger river systems. Solid cold season precipitation is mostly uniform over the area, while warm season precipitation is greater in the mountains and foothills than on the coastal plain (roughly 3:2:1, mountains:foothills: coastal plain).The results reported here are primarily for the drainages of the Itkillik, Anaktuvuk, and Chandler River basins, where a proposed transportation corridor is being considered. Results for 2011 and before can be found in earlier reports.ABSTRACT ..................................................................................................................................... i LIST OF FIGURES ........................................................................................................................ v LIST OF TABLES .......................................................................................................................... x ACKNOWLEDGMENTS AND DISCLAIMER ........................................................................ xiii CONVERSION FACTORS, UNITS, WATER QUALITY UNITS, VERTICAL AND HORIZONTAL DATUM, ABBREVIATIONS, AND SYMBOLS ........................................... xiv ABBREVIATIONS, ACRONYMS, AND SYMBOLS .............................................................. xvi 1 INTRODUCTION ................................................................................................................... 1 2 PRIOR RELATED PUBLICATIONS .................................................................................... 5 3 STUDY AREA ........................................................................................................................ 7 4 PREVIOUS STUDIES .......................................................................................................... 11 5 METHODOLOGY AND EQUIPMENT .............................................................................. 15 5.1 Acoustic Doppler Current Profiler ................................................................................. 17 5.2 Discharge Measurements ............................................................................................... 17 5.3 Suspended Sediments ..................................................................................................... 20 5.3.1 River Sediment ........................................................................................................ 21 5.3.2 Suspended Sediment Observations ......................................................................... 21 5.3.3 Suspended Sediment Discharge .............................................................................. 22 5.3.4 Turbidity ................................................................................................................. 23 5.3.5 Bed Sediment Distribution ...................................................................................... 23 5.3.6 Suspended Sediment Grain-Size Distribution ........................................................ 24 6 RESULTS .............................................................................................................................. 25 6.1 Air Temperature and Relative Humidity ........................................................................ 25 6.2 Wind Speed and Direction ............................................................................................. 30 6.3 Net Radiation .................................................................................................................. 38 6.4 Warm Season Precipitation ............................................................................................ 40 6.5 Cold Season Precipitation .............................................................................................. 46 6.6 Annual Precipitation ....................................................................................................... 52 6.7 Soil ................................................................................................................................. 55 6.7.1 Soil Temperature ..................................................................................................... 56 6.7.1.1 Results ................................................................................................................. 57 6.7.2 Soil Moisture ........................................................................................................... 60 6.7.2.1 Results ................................................................................................................. 61 6.8 North Slope Climatology ............................................................................................... 63 6.8.1 Air Temperature ...................................................................................................... 63 6.8.2 Precipitation ............................................................................................................ 65 6.8.2.1 Warm Season Precipitation ................................................................................. 65 6.8.2.2 Cold Season Precipitation ................................................................................... 68 6.8.2.3 Annual Total Precipitation .................................................................................. 70 6.9 Surface Water Hydrology ............................................................................................... 72 6.9.1 Itkillik River ............................................................................................................ 73 6.9.2 Upper Itkillik River ................................................................................................. 74 6.9.2.1 Dye Trace Results, Upper Itkillik River .............................................................. 81 6.9.3 Lower Itkillik River 2013 Breakup and Spring Flood ............................................ 84 6.9.4 Anaktuvuk River ..................................................................................................... 91 6.9.5 Chandler River ...................................................................................................... 100 6.9.6 Additional Field Observations .............................................................................. 107 6.10 River Sediment Results ................................................................................................ 117 6.10.1 Correlation between Isco and Depth-Integrated Samples ..................................... 117 6.10.2 Suspended Sediment Rating Curves ..................................................................... 118 6.10.3 Suspended Sediment Concentrations .................................................................... 119 6.10.4 Suspended Sediment Discharge ............................................................................ 125 6.10.5 Turbidity ............................................................................................................... 129 6.10.6 Bed Sediment Distribution .................................................................................... 134 6.10.7 Suspended Sediment Grain-Size Distribution ...................................................... 136 7 HYDROLOGIC ANALYSIS .............................................................................................. 139 7.1 Precipitation Frequency Analysis ................................................................................. 139 7.2 Manning’s Roughness Coefficient (n) Calculations Revisited .................................... 142 7.3 Hydrological Modeling ................................................................................................ 147 8 CONCLUSIONS ................................................................................................................. 157 9 REFERENCES .................................................................................................................... 163 10 APPENDICES ..................................................................................................................... 169 Appendix A – Air Temperature and Relative Humidity Appendix B – Wind Speed and Direction: Wind Roses Appendix C – Cumulative Warm Season Precipitation for All Years at Each Station and Cumulative Warm Season Precipitation by Year for All Stations, 2007 to 2013 Appendix D – Soil Temperature and Moisture Content Appendix E – Rating Curves and Discharge Measurement Summarie

    Sustained Observations of Changing Arctic Coastal and Marine Environments and Their Potential Contribution to Arctic Maritime Domain Awareness: A Case Study in Northern Alaska

    Get PDF
    Increased maritime activities and rapid environmental change pose significant hazards, both natural and technological, to Arctic maritime operators and coastal communities. Currently, U.S. and foreign research activities account for more than half of the sustained hazard-relevant observations in the U.S. maritime Arctic, but hazard assessment and emergency response are hampered by a lack of dedicated hazard monitoring installations in the Arctic. In the present study, we consider a number of different sustained environmental observations associated with research into atmosphere-ice-ocean processes, and discuss how they can help support the toolkit of emergency responders. Building on a case study at UtqiaÄĄvik (Barrow), Alaska, we investigate potential hazards in the seasonally ice-covered coastal zone. Guided by recent incidents requiring emergency response, we analyze data from coastal radar and other observing assets, such as an ice mass balance site and oceanographic moorings, in order to outline a framework for coastal maritime hazard assessments that builds on diverse observing systems infrastructure. This approach links Arctic system science research to operational information needs in the context of the development of a Common Operational Picture (COP) for Maritime Domain Awareness (MDA) relevant for Arctic coastal and offshore regions. A COP in these regions needs to consider threats not typically part of the classic MDA framework, including sea ice or slow-onset hazards. An environmental security and MDA testbed is proposed for northern Alaska, building on research and community assets to help guide a hybrid research-operational framework that supports effective emergency response in Arctic regions.L’augmentation des activitĂ©s maritimes et l’évolution rapide de l’environnement prĂ©sentent des risques naturels et technologiques importants pour les opĂ©rateurs maritimes et les collectivitĂ©s cĂŽtiĂšres de l’Arctique. Actuellement, les travaux de recherche, tant amĂ©ricains qu’étrangers, reprĂ©sentent plus de la moitiĂ© des observations prolongĂ©es liĂ©es aux dangers dans l’Arctique maritime amĂ©ricain, mais l’évaluation des risques et les interventions d’urgence sont entravĂ©es par le manque d’installations consacrĂ©es Ă  la surveillance des dangers dans l’Arctique. Dans la prĂ©sente Ă©tude, nous nous penchons sur diverses observations environnementales prolongĂ©es en matiĂšre de recherche sur les processus atmosphĂšre-glace-ocĂ©an et nous discutons de la façon dont elles peuvent contribuer aux interventions d’urgence. En nous appuyant sur une Ă©tude de cas faite Ă  UtqiaÄĄvik (Barrow), en Alaska, nous Ă©tudions les risques potentiels inhĂ©rents Ă  la zone cĂŽtiĂšre couverte de glace saisonniĂšre. MotivĂ©s par des incidents rĂ©cents qui ont nĂ©cessitĂ© des interventions d’urgence, nous analysons les donnĂ©es provenant des radars cĂŽtiers et d’autres ressources d’observation, comme un site de bilan de masse des glaciers et des amarrages ocĂ©anographiques, afin d’établir un cadre pour Ă©valuer les risques maritimes cĂŽtiers, cadre qui s’appuie sur diverses infrastructures de systĂšmes d’observation. Cette approche relie la recherche scientifique sur le systĂšme arctique aux besoins d’information opĂ©rationnelle dans le contexte du dĂ©veloppement d’une image commune de la situation opĂ©rationnelle (ICSO) pour la connaissance du domaine maritime (CDM) pertinente des zones cĂŽtiĂšres et extracĂŽtiĂšres de l’Arctique. Une ICSO dans ces zones doit prendre en compte les menaces ne faisant gĂ©nĂ©ralement pas partie du cadre classique de la CDM, y compris la glace de mer ou les dangers Ă  Ă©volution lente. En s’appuyant sur des travaux de recherche et l’apport des collectivitĂ©s, un banc d’essai en matiĂšre de sĂ©curitĂ© environnementale et de CDM est proposĂ© pour le nord de l’Alaska afin de guider un cadre hybride de recherche et d’opĂ©ration qui favoriserait une intervention d’urgence efficace dans les rĂ©gions arctiques
    • 

    corecore