505 research outputs found

    Investigation of the McDonnell-Douglas orbiter and booster shuttle models in proximity at Mach numbers 2.0 to 6.0. Volume 7: Proximity data at Mach 4 and 6, interference free and launch vehicle data

    Get PDF
    Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration

    Space shuttle abort separation pressure investigation. Volume 1, Part A: Booster data at Mach 5

    Get PDF
    Pressure data obtained from a joint Langley Research Center (LaRC)/Marshall Space Flight Center (MSFC) Space Shuttle about stage separation wind tunnel test are presented. The .00556 scale models of the McDonnell-Douglas orbiter and booster configurations were tested in proximity in Tunnel A of the Von Karman Facility (VKF), Arnold Engineering Development Center (AEDC). Mach numbers were 5.0, 3.0, and 2.0 and nominal Reynolds numbers were 1.09, 1.60, and 1.74 million per foot, respectively. Pressure data were obtained for the booster upper surface and orbiter lower surface at angles of attack of -10 deg, -5, 0, 5, and 10 deg for zero degrees sideslip. The models were tested at incidence angles of 0 and 5 deg for several separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Data were also obtained with the booster canard off in close proximity

    The Case for Dynamic Models of Learners' Ontologies in Physics

    Full text link
    In a series of well-known papers, Chi and Slotta (Chi, 1992; Chi & Slotta, 1993; Chi, Slotta & de Leeuw, 1994; Slotta, Chi & Joram, 1995; Chi, 2005; Slotta & Chi, 2006) have contended that a reason for students' difficulties in learning physics is that they think about concepts as things rather than as processes, and that there is a significant barrier between these two ontological categories. We contest this view, arguing that expert and novice reasoning often and productively traverses ontological categories. We cite examples from everyday, classroom, and professional contexts to illustrate this. We agree with Chi and Slotta that instruction should attend to learners' ontologies; but we find these ontologies are better understood as dynamic and context-dependent, rather than as static constraints. To promote one ontological description in physics instruction, as suggested by Slotta and Chi, could undermine novices' access to productive cognitive resources they bring to their studies and inhibit their transition to the dynamic ontological flexibility required of experts.Comment: The Journal of the Learning Sciences (In Press

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200

    Citizenship Education and Liberalism: A State of the Debate Analysis 1990–2010

    Get PDF
    What kind of citizenship education, if any, should schools in liberal societies promote? And what ends is such education supposed to serve? Over the last decades a respectable body of literature has emerged to address these and related issues. In this state of the debate analysis we examine a sample of journal articles dealing with these very issues spanning a twenty-year period with the aim to analyse debate patterns and developments in the research field. We first carry out a qualitative analysis where we design a two-dimensional theoretical framework in order to systematise the various liberal debate positions, and make us able to study their justifications, internal tensions and engagements with other positions. In the ensuing quantitative leg of the study we carry out a quantitative bibliometric analysis where we weigh the importance of specific scholars. We finally discuss possible merits and flaws in the research field, as evidenced in and by the analysis
    • …
    corecore