3 research outputs found

    Selenium and outcome in heart failure

    Get PDF
    Aims: Severe deficiency of the essential trace element selenium can cause myocardial dysfunction although the mechanism at cellular level is uncertain. Whether, in clinical practice, moderate selenium deficiency is associated with worse symptoms and outcome in patients with heart failure is unknown. Methods and results: BIOSTAT‐CHF is a multinational, prospective, observational cohort study that enrolled patients with worsening heart failure. Serum concentrations of selenium were measured by inductively coupled plasma mass spectrometry. Primary endpoint was a composite of all‐cause mortality and hospitalization for heart failure; secondary endpoint was all‐cause mortality. To investigate potential mechanisms by which selenium deficiency might affect prognosis, human cardiomyocytes were cultured in absence of selenium, and mitochondrial function and oxidative stress were assessed. Serum selenium concentration (deficiency) was <70 μg/L in 485 (20.4%) patients, who were older, more often women, had worse New York Heart Association class, more severe signs and symptoms of heart failure and poorer exercise capacity (6‐min walking test) and quality of life (Kansas City Cardiomyopathy Questionnaire). Selenium deficiency was associated with higher rates of the primary endpoint [hazard ratio (HR) 1.23; 95% confidence interval (CI) 1.06–1.42] and all‐cause mortality (HR 1.52; 95% CI 1.26–1.86). In cultured human cardiomyocytes, selenium deprivation impaired mitochondrial function and oxidative phosphorylation, and increased intracellular reactive oxygen species levels. Conclusions: Selenium deficiency in heart failure patients is independently associated with impaired exercise tolerance and a 50% higher mortality rate, and impaired mitochondrial function in vitro, in human cardiomyocytes. Clinical trials are needed to investigate the effect of selenium supplements in patients with heart failure, especially if they have low plasma concentrations of selenium

    Night shift work characteristics are associated with several elevated metabolic risk factors and immune cell counts in a cross-sectional study.

    Get PDF
    Night shift work is associated with increased health risks. Here we examined the association of metabolic risk factors and immune cell counts, with both night shift work and particular characteristics thereof: frequency, duration and consecutive night shifts. We performed a cross-sectional study using data from 10,201 non-shift workers and 1062 night shift workers of the Lifelines Cohort study. Linear regression analyses, adjusted for demographic, lifestyle and occupational factors, were used to study associations of night shift work characteristics with metabolic risk factors and immune cell counts. Night shift workers had an increased BMI, waist circumference and immune cell counts compared to non-shift workers. This was especially seen in night shift workers who had a higher frequency of night shifts per month (≥ 5: BMI: B = 0.81 kg/m2 (95%-CI = 0.43-1.10); waist circumference: B = 1.58 cm (95%-Cl = 0.34-1.71; leukocytes: B = 0.19 × 109 cells/L (95%-CI = 0.04-0.34 × 109)) and worked more consecutive night shifts (> 3: BMI: B = 0.92 kg/m2 (95%-CI = 0.41-1.43); waist circumference: B = 1.85 cm (95%-Cl = 0.45-3.24); leukocytes: B = 0.32 × 109 cells/L (95%-CI = 0.09-0.55 × 109)). This association was less pronounced in long-term night shift workers (≥ 20 years). Our findings provide evidence for the association between night shift work characteristics and BMI, waist circumference and leukocytes (including, monocytes, lymphocytes, and basophil granulocytes)
    corecore