9 research outputs found
Automated Classification of Stellar Spectra: Where Are We Now?
We briefly review the work of the past decade on automated classification of stellar spectra and discuss techniques which show particular promise. Emphasis is placed on Artificial Neural Network and Principle Component Analysis based techniques, due both to our greater familiarity with these and to their rising popularity. As an example of the abilities of current techniques we report on our automated classification work based on the visual classifications of N. Houk (Michigan Spectral Catalogue, Vol. 1 - 4, 1975, 1978, 1982, 1988)
CMBR Weak Lensing and HI 21-cm Cross-correlation Angular Power Spectrum
Weak gravitational lensing of the CMBR manifests as a secondary anisotropy in
the temperature maps. The effect, quantified through the shear and convergence
fields imprint the underlying large scale structure (LSS), geometry and
evolution history of the Universe. It is hence perceived to be an important
observational probe of cosmology. De-lensing the CMBR temperature maps is also
crucial for detecting the gravitational wave generated B-modes. Future
observations of redshifted 21-cm radiation from the cosmological neutral
hydrogen (HI) distribution hold the potential of probing the LSS over a large
redshift range. We have investigated the correlation between post-reionization
HI signal and weak lensing convergence field. Assuming that the HI follows the
dark matter distribution, the cross-correlation angular power spectrum at a
multipole \ell is found to be proportional to the cold dark matter power
spectrum evaluated at \ell/r, where r denotes the comoving distance to the
redshift where the HI is located. The amplitude of the ross-correlation depends
on quantities specific to the HI distribution, growth of perturbations and also
the underlying cosmological model. In an ideal ituation, we found that a
statistically significant detection of the cross-correlation signal is
possible. If detected, the cross-correlation signal hold the possibility of a
joint estimation of cosmological parameters and also test various CMBR
de-lensing estimators.Comment: 14 pages, 4 figures, publishe
The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum
The late-time growth of large scale structures (LSS) is imprinted in the CMBR
anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived
to be a very important observational probe of dark energy. Future observations
of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI)
distribution hold the potential of probing the LSS over a large redshift range.
We have investigated the possibility of detecting the ISW through
cross-correlations between the CMBR anisotropies and redshifted 21-cm
observations. Assuming that the HI traces the dark matter, we find that the
ISW-HI cross-correlation angular power spectrum at an angular multipole l is
proportional to the dark matter power spectrum evaluated at the comoving wave
number l/r, where r is the comoving distance to the redshift from which the HI
signal originated. The amplitude of the cross-correlation signal depends on
parameters related to the HI distribution and the growth of cosmological
perturbations. However the cross-correlation is extremely weak as compared to
the CMBR anisotropies and the predicted HI signal. As a consequence the
cross-correlation signal is smaller than the cosmic variance, and a
statistically significant detection is not very likely.Comment: 13 pages, 4 eps figures, submitte
Using HI to probe large scale structures at z ~ 3
The redshifted 1420 MHz emission from the HI in unresolved damped
Lyman-\alpha clouds at high z will appear as a background radiation in low
frequency radio observations. This holds the possibility of a new tool for
studying the universe at high-z, using the mean brightness temperature to probe
the HI content and its fluctuations to probe the power spectrum. Existing
estimates of the HI density at z~3 imply a mean brightness temperature of 1 mK
at 320 Mhz. The cross-correlation between the temperature fluctuations across
different frequencies and sight lines is predicted to vary from 10^{-7} K^2 to
10^{-8} K^2 over intervals corresponding to spatial scales from 10 Mpc to 40
Mpc for some of the currently favoured cosmological models. Comparing this with
the expected sensitivity of the GMRT, we find that this can be detected with
\~10 hrs of integration, provided we can distinguish it from the galactic and
extragalactic foregrounds which will swamp this signal. We discuss a strategy
based on the very distinct spectral properties of the foregrounds as against
the HI emission, possibly allowing the removal of the foregrounds from the
observed maps.Comment: 16 pages, includes 6 figures, accepted in JAA (minor revisions,
references added
Baryons: What, When and Where?
We review the current state of empirical knowledge of the total budget of
baryonic matter in the Universe as observed since the epoch of reionization.
Our summary examines on three milestone redshifts since the reionization of H
in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the
observational techniques used to discover and characterize the phases of
baryons. In the spirit of the meeting, the level is aimed at a diverse and
non-expert audience and additional attention is given to describe how space
missions expected to launch within the next decade will impact this scientific
field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised
to address comments from the communit
Absorption in the highest redshift quasars
SIGLEAvailable from British Library Document Supply Centre-DSC:D064211 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Automated classification of stellar spectra - I. Initial results with artificial neural networks
We have initiated a project to classify stellar spectra automatically from high-dispersion objective prism plates. The automated technique presented here is a simple back propagation neural network and is based on the visual classification work of Houk. The plate material (Houk’s) is currently being digitized, and contains « 105 stars down to K æ 11 at æ 2-Â resolution from « 3850 to 5150 Â. For this first paper in the series, we report on the results of 575 stars digitized from 6 plates. We find that even with the limited data set now in hand we can determine the temperature classification to better than 1.7 spectral subtypes from B3 to M4. Our current sample size provides insufficient training set material to generate luminosity and metallicity classifications. Our eventual aims in this project are (1) to create a large and homogeneous digital stellar spectral library; (2) to create a well-understood and robust automatic classification algorithm which can determine temperatures, luminosities and metallicities for a wide variety of spectral types; (3) to use these data, supplemented by deeper plate material, for the study of Galactic structure and chemical evolution; and (4) to find unusual or new classes of objects
Automated Classification of Stellar Spectra: Where Are We Now?
We briefly review the work of the past decade on automated classification of stellar spectra and discuss techniques which show particular promise. Emphasis is placed on Artificial Neural Network and Principle Component Analysis based techniques, due both to our greater familiarity with these and to their rising popularity. As an example of the abilities of current techniques we report on our automated classification work based on the visual classifications of N. Houk (Michigan Spectral Catalogue, Vol. 1 - 4, 1975, 1978, 1982, 1988)
The Frontier Fields: Survey Design
International audienceThe Frontier Fields are a director's discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combine the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters - Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370 - were selected based on their lensing strength, sky darkness, Galactic extinction, parallel field suitability, accessibility to ground-based facilities, HST, Spitzer and JWST observability, and pre-existing ancillary data. These clusters have been targeted by the HST ACS/WFC and WFC3/IR with coordinated parallels of adjacent blank fields for over 840 HST orbits. The Spitzer Space Telescope has dedicated > 1000 hours of director's discretionary time to obtain IRAC 3.6 and 4.5 micron imaging to ~26.5, 26.0 ABmag 5-sigma point-source depths in the six cluster and six parallel Frontier Fields. The Frontier Field parallel fields are the second-deepest observations thus far by HST with ~29th ABmag 5-sigma point source depths in seven optical - near-infrared bandpasses. Galaxies behind the Frontier Field cluster lenses experience typical magnification factors of a few, with small regions near the critical curves magnified by factors 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ~30-33 magnitudes over very small volumes. Early studies of the Frontier Fields have probed galaxies fainter than any seen before during the epoch of reionization 6 < z < 10, mapped out the cluster dark matter to unprecedented resolution, and followed lensed transient events