36,903 research outputs found
Income inequality in the digital era. WP C.S.D.L.E. "Massimo D'Antona", N. 9, 2002
[From the Introduction]. The changes in the employment relationship have been accompanied by a marked deterioration in income distribution.... The growing gap between rich and poor stands as a persistent reminder that current economic arrangements are not moving in the direction of economic justice. The dramatic extent of inequality offends our sense of decency and undermines social cohesion. In recent years, many economists have analyzed the trends in income distribution in order to isolate the causes of the current trends. In this paper I review the existing evidence and theories about the causes of rising income inequality. I suggest that the changing nature of the employment relationship is contributing to, or perhaps even driving, rising income inequality. The following chapter presents and evaluates several policy proposals for redressing inequality or ameliorating its effects
The kynurenine pathway and the brain: challenges, controversies and promises
Research on the neurobiology of the kynurenine pathway has suffered years of relative obscurity because tryptophan degradation, and its involvement in both physiology and major brain diseases, was viewed almost exclusively through the lens of the well-established metabolite serotonin. With increasing recognition that kynurenine and its metabolites can affect and even control a variety of classic neurotransmitter systems directly and indirectly, interest is expanding rapidly. Moreover, kynurenine pathway metabolism itself is modulated in conditions such as infection and stress, which are known to induce major changes in well-being and behaviour, so that kynurenines may be instrumental in the etiology of psychiatric and neurological disorders. It is therefore likely that the near future will not only witness the discovery of additional physiological and pathological roles for brain kynurenines, but also ever-increasing interest in drug development based on these roles. In particular, targeting the kynurenine pathway with new specific agents may make it possible to prevent disease by appropriate pharmacological or genetic manipulations.
The following overview focuses on areas of kynurenine research which are either controversial, of major potential therapeutic interest, or just beginning to receive the degree of attention which will clarify their relevance to neurobiology and medicine. It also highlights technical issues so that investigators entering the field, and new research initiatives, are not misdirected by inappropriate experimental approaches or incorrect interpretations at this time of skyrocketing interest in the subject matter
The gut-brain axis, BDNF, NMDA and CNS disorders
Gastro-intestinal (GI) microbiota and the ‘gut-brain axis’ are proving to be increasingly relevant to early brain development and the emergence of psychiatric disorders. This review focuses on the influence of the GI tract on Brain-Derived Neurotrophic Factor (BDNF) and its relationship with receptors for N-methyl-d-aspartate (NMDAR), as these are believed to be involved in synaptic plasticity and cognitive function. NMDAR may be associated with the development of schizophrenia and a range of other psychopathologies including neurodegenerative disorders, depression and dementias. An analysis of the routes and mechanisms by which the GI microbiota contribute to the pathophysiology of BDNF-induced NMDAR dysfunction could yield new insights relevant to developing novel therapeutics for schizophrenia and related disorders. In the absence of GI microbes, central BDNF levels are reduced and this inhibits the maintenance of NMDAR production. A reduction of NMDAR input onto GABA inhibitory interneurons causes disinhibition of glutamatergic output which disrupts the central signal-to-noise ratio and leads to aberrant synaptic behaviour and cognitive deficits. Gut microbiota can modulate BDNF function in the CNS, via changes in neurotransmitter function by affecting modulatory mechanisms such as the kynurenine pathway, or by changes in the availability and actions of short chain fatty acids (SCFAs) in the brain. Interrupting these cycles by inducing changes in the gut microbiota using probiotics, prebiotics or antimicrobial drugs has been found promising as a preventative or therapeutic measure to counteract behavioural deficits and these may be useful to supplement the actions of drugs in the treatment of CNS disorders
Ride quality - An exploratory study and criteria development
The Langley six degree of freedom visual motion simulator has been used to measure subjective response ratings of the ride quality of eight segments of flight, representative of a wide variation in comfort estimates. The results indicate that the use of simulators for this purpose appears promising. A preliminary approach for the development of criteria for ride quality ratings based on psychophysical precepts is included
From Microscales to Macroscales in 3D: Selfconsistent Equation of State for Supernova and Neutron Star Models
First results from a fully self-consistent, temperature-dependent equation of
state that spans the whole density range of neutron stars and supernova cores
are presented. The equation of state (EoS) is calculated using a mean-field
Hartree-Fock method in three dimensions (3D). The nuclear interaction is
represented by the phenomenological Skyrme model in this work, but the EoS can
be obtained in our framework for any suitable form of the nucleon-nucleon
effective interaction. The scheme we employ naturally allows effects such as
(i) neutron drip, which results in an external neutron gas, (ii) the variety of
exotic nuclear shapes expected for extremely neutron heavy nuclei, and (iii)
the subsequent dissolution of these nuclei into nuclear matter. In this way,
the equation of state is calculated across phase transitions without recourse
to interpolation techniques between density regimes described by different
physical models. EoS tables are calculated in the wide range of densities,
temperature and proton/neutron ratios on the ORNL NCCS XT3, using up to 2000
processors simultaneously.Comment: 6 pages, 11 figures. Published in conference proceedings Journal of
Physics: Conference Series 46 (2006) 408. Extended version to be submitted to
Phys. Rev.
Effect of aerodynamic and angle-of-attack uncertainties on the May 1979 entry flight control system of the Space Shuttle from Mach 8 to 1.5
A six degree of freedom simulation analysis was performed for the space shuttle orbiter during entry from Mach 8 to Mach 1.5 with realistic off nominal conditions by using the flight control systems defined by the shuttle contractor. The off nominal conditions included aerodynamic uncertainties in extrapolating from wind tunnel derived characteristics to full scale flight characteristics, uncertainties in the estimates of the reaction control system interaction with the orbiter aerodynamics, an error in deriving the angle of attack from onboard instrumentation, the failure of two of the four reaction control system thrusters on each side, and a lateral center of gravity offset coupled with vehicle and flow asymmetries. With combinations of these off nominal conditions, the flight control system performed satisfactorily. At low hypersonic speeds, a few cases exhibited unacceptable performances when errors in deriving the angle of attack from the onboard instrumentation were modeled. The orbiter was unable to maintain lateral trim for some cases between Mach 5 and Mach 2 and exhibited limit cycle tendencies or residual roll oscillations between Mach 3 and Mach 1. Piloting techniques and changes in some gains and switching times in the flight control system are suggested to help alleviate these problems
The effects of the plane of vestibular stimulation on task performance and involuntary eye motion
Vestibular stimulation and subject orientation effects on task performance and involuntary eye motio
Entry dynamics of space shuttle orbiter with longitudinal stability and control uncertainties at supersonic and hypersonic speeds
A six-degree-of-freedom simulation analysis was conducted to examine the effects of longitudinal static aerodynamic stability and control uncertainties on the performance of the space shuttle orbiter automatic (no manual inputs) entry guidance and control systems. To establish the acceptable boundaries, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. With either of two previously identified control system modifications included, the acceptable longitudinal aerodynamic boundaries were determined
Some observations during weightlessness sim- ulation with subject immersed in a rotating water tank
Observations during weightlessness simulation with subject immersed in rotating water tan
- …