9 research outputs found

    Pollen, micro-charcoal, and non-pollen palynomorph counts of Dead Sea core 5017-1-A (88-14 ka BP)

    No full text
    The southern Levant is a key region for studying vegetation developments in relation to climate dynamics and hominin migration processes in the past due to the sensitivity of the vegetation to climate variations and the long history of different anthropogenic occupation phases. However, paleoenvironmental conditions in the southern Levant during the Late Pleistocene were still insufficiently understood. Therefore, we investigated the vegetation and fire history of the Dead Sea region during the last glacial period. We present a new palynological study conducted on sediments of Lake Lisan, the last glacial precursor of the Dead Sea. The sediments were recovered from the center of the modern Dead Sea within an ICDP campaign. The palynological results suggest that Irano-Turanian steppe and Saharo-Arabian desert vegetation prevailed in the Dead Sea region during the investigated period (ca. 88,000–14,000 years BP). Nevertheless, Mediterranean woodland elements significantly contributed to the vegetation composition, suggesting moderate amounts of available water for plants. The early last glacial was characterized by dynamic climate conditions with pronounced dry phases and high but unstable fire activity. Anatomically modern humans entered the southern Levant during a climatically stable phase (late MIS 4–MIS 3) with diverse habitats, constant moisture availability, and low fire activity. MIS 2 was the coldest phase of the investigated timeframe, causing changes in woodland composition and a widespread occurrence of steppe. We used a biome modeling approach to assess regional vegetation patterns under changing climate conditions and to evaluate different climate scenarios for the last glacial Levant. The study provides new insights into the environmental responses of the Dead Sea region to climate variations through time. It contributes towards our understanding of the paleoenvironmental conditions in the southern Levant, which functioned as an important corridor for human migration processes

    Simulated signatures of Greenland melting in the North Atlantic: A model comparison with Argo floats, satellite observations, and ocean reanalysis

    Get PDF
    Increased Greenland ice sheet melting has an impact on global mean and regional sea level rise and the ocean circulation. In this study, we explore whether Greenland melting signatures found in ocean model simulations are visible in observations from radar altimetry, satellite gravimetry and Argo floats. We have included Greenland freshwater flux (GF) in the global Finite-Element-Sea ice-Ocean Model (FESOM) for the years 1993–2016. The reference run is computed by excluding Greenland freshwater input. These experiments are performed on a low resolution (ca. 24 km) and a high resolution (ca. 6 km) eddy-permitting mesh. For comparison with the model experiments, we use different observational data, such as Argo floats, satellite observations, and reanalyses. We find that surface GF maps into signatures in temperature and salinity down to about 100 m in the surroundings of Greenland. The simulated melting signatures are particularly visible in steric heights in Baffin Bay and Davis Strait. Here, we find an improvement of the mean square error of up to 30% when including GF. For the Nordic part of the Nordic Seas, however, we find no improvement when including GF. We compare steric heights with reanalysis data and a new setup of the inversion method from gravimetric and altimetric satellite data. We cannot confirm that the GF signatures on variables such as temperature and salinity are visible in the observations on the time scales considered. However, we find that increased model resolution often causes larger improvements than occur due to including the simulated melting effect

    Interannual Changes in Tidal Conversion Modulate M2 Amplitudes in the Gulf of Maine

    No full text
    AbstractThe Gulf of Maine's lunar semidiurnal (M2) ocean tide exhibits spatially coherent amplitude changes of ∼1–3 cm on interannual time scales, though no causative mechanism has been identified. Here we show, using a specially designed numerical modeling framework, that stratification changes account for 32%–48% (Pearson coefficient 0.58–0.69) of the observed M2 variability at tide gauges from 1994 to 2019. Masking experiments and energy diagnoses reveal that the modeled variability is primarily driven by fluctuations in barotropic‐to‐baroclinic energy conversion on the continental slope south of the gulf's mouth, with a 1‐cm amplitude increase at Boston corresponding to a ∼7% (0.30 GW) drop in the area‐integrated conversion rate. Evidence is given for the same process to have caused the decade‐long M2 amplitude decrease in the Gulf of Maine beginning in 1980/81. The study has implications for nuisance flooding predictions and space geodetic analyses seeking highest accuracies.Plain Language Summary: The height of the twice‐daily tide at Boston is about 135 cm, but researchers have long noted that this value fluctuates by about 1–3 cm from year to year. Here we show that the annual tidal height changes—seen in fact throughout the Gulf of Maine—are closely linked to how seawater density is distributed three‐dimensionally in the region. In particular, as tidal currents enter the gulf over steep underwater topography, the vertical distribution of density determines how much of the incoming wave energy is scattered back as internal tides into the deeper Northwest Atlantic. In years where this conversion of wave energy drops by 7% from its nominal value of 4 Gigawatt, the surface tide at Boston typically increases by 1 cm. Climate‐induced changes in ocean temperature and density may strengthen or weaken the conversion effect and thus slightly alter the role of tides in coastal flood events.Key Points2 tide through realistic, annually varying density structures (1993–2019) in a regional Gulf of Maine model. Stratification changes explain 32%–48% of the observed, cm‐level M2 amplitude variability at coastal tide gauges from 1994 to 2019. Modeled M2 changes mainly reflect fluctuations in the barotropic‐baroclinic energy conversion rate on the New England continental slope.Austrian Science Fund http://dx.doi.org/10.13039/501100002428Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659https://www.gesla.org/https://www.tpxo.net/global/tpxo9-atlashttps://doi.pangaea.de/10.1594/PANGAEA.856844https://marine.copernicus.eu/access-datahttps://www.ncei.noaa.gov/products/northwest-atlantic-regional-climatolog

    Revealing skill of the MiKlip decadal prediction system by three-dimensional probabilistic evaluation

    No full text
    Decadal climate predictions and their verification are part of ongoing research. This article studies different methods applied to decadal hindcasts of three-dimensional atmospheric variables to evaluate the MiKlip (Mittelfristige Klimaprognosen) prediction system. Variables such as upper air temperature are tight to the core of the prediction system and hence help to reveal its power and deficiencies. The verification uses both, necessary and sufficient probabilistic measures. We analyze annual and multi-year averages of air temperature and geopotential height and the parametrized quantity net water flux at the ocean surface, the so-called freshwater flux, also known as E‑P (evaporation minus precipitation), as an important variable for atmosphere-ocean coupling. The model data stem from various versions of the MiKlip prediction system and constitute different sets of ensemble hindcasts covering 1979–2012. The results reveal that the freshwater flux is far more sensitive to model deficiencies than the basic dynamical variables and the predictability decays much earlier with prediction lead time. Initializing the atmospheric component is more important for the predictability than the difference in resolution between two model versions. The combined initialization of atmosphere and ocean has the effect of increasing the predictability in the inner tropics from 1 to 2 years compared to the ocean only initialization. For prediction year 7–10, the hindcasts are still closer to each other than to the uninitialized historical runs indicating that the prediction system is still influenced by the initial conditions. The skill for prediction year 7–10 is, however, only marginally larger than the skill of the uninitialized ensemble. The three-dimensional skill analysis reveals a clear indication of a mid-tropospheric temperature error developing in the tropical Pacific area

    Evaluation of the MiKlip decadal prediction system using satellite based cloud products

    No full text
    The decadal hindcast simulations performed for the Mittelfristige Klimaprognosen (MiKlip) project are evaluated using satellite-retrieved cloud parameters from the CM SAF cLoud, Albedo and RAdiation dataset from AVHRR data (CLARA-A1) provided by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) and from the International Satellite Cloud Climatology Project (ISCCP). The forecast quality of two sets of hindcasts, Baseline-1-LR and Baseline-0, which use differing initialisations, is assessed. Basic evaluation focuses on multi-year ensemble mean fields and cloud-type histograms utilizing satellite simulator output. Additionally, ensemble evaluation employing analysis of variance (ANOVA), analysis rank histograms (ARH) and a deterministic correlation score is performed. Satellite simulator output is available for a subset of the full hindcast ensembles only. Therefore, the raw model cloud cover is complementary used. The new Baseline-1-LR hindcasts are closer to satellite data with respect to the simulated tropical/subtropical mean cloud cover pattern than the reference hindcasts (Baseline-0) emphasizing improvements of the new MiKlip initialisation procedure. A slightly overestimated occurrence rate of optically thick cloud-types is analysed for different experiments including hindcasts and simulations using realistic sea surface boundaries according to the Atmospheric Model Intercomparison Project (AMIP). By contrast, the evaluation of cirrus and cirrostratus clouds is complicated by observational based uncertainties. Time series of the 3-year mean total cloud cover averaged over the tropical warm pool (TWP) region show some correlation with the CLARA-A1 cloud fractional cover. Moreover, ensemble evaluation of the Baseline-1-LR hindcasts reveals potential predictability of the 2–5 lead year averaged total cloud cover for a large part of this region when regarding the full observational period. However, the hindcasts show only moderate positive correlations with the CLARA-A1 satellite retrieval for the TWP region which are hardly statistical significant. Evidence for predictability of the 2–5 lead year averaged total cloud cover is found for parts of the equatorial to mid-latitudinal North Atlantic

    Simulated Signatures of Greenland Melting in the North Atlantic: A Model Comparison With Argo Floats, Satellite Observations, and Ocean Reanalysis

    No full text
    Increased Greenland ice sheet melting has an impact on global mean and regional sea level rise and the ocean circulation. In this study, we explore whether Greenland melting signatures found in ocean model simulations are visible in observations from radar altimetry, satellite gravimetry and Argo floats. We have included Greenland freshwater flux (GF) in the global Finite‐Element‐Sea ice‐Ocean Model (FESOM) for the years 1993–2016. The reference run is computed by excluding Greenland freshwater input. These experiments are performed on a low resolution (ca. 24 km) and a high resolution (ca. 6 km) eddy‐permitting mesh. For comparison with the model experiments, we use different observational data, such as Argo floats, satellite observations, and reanalyses. We find that surface GF maps into signatures in temperature and salinity down to about 100 m in the surroundings of Greenland. The simulated melting signatures are particularly visible in steric heights in Baffin Bay and Davis Strait. Here, we find an improvement of the mean square error of up to 30% when including GF. For the Nordic part of the Nordic Seas, however, we find no improvement when including GF. We compare steric heights with reanalysis data and a new setup of the inversion method from gravimetric and altimetric satellite data. We cannot confirm that the GF signatures on variables such as temperature and salinity are visible in the observations on the time scales considered. However, we find that increased model resolution often causes larger improvements than occur due to including the simulated melting effect.Plain Language Summary: In recent years, Greenland's freshwater contribution to the ocean has increased due to the accelerated melting of its ice sheet and glaciers. In this study, we investigate the importance of this melting in reproducing the observed characteristics of the northern part of the North Atlantic Ocean in a numerical ocean model. To do that, we compare the results of two model simulations, one with and one without Greenland melt, with in situ observations or data from satellites. The inclusion of Greenland melt results in a better model representation of the ocean in terms of salinity, temperature, and sea level anomalies, especially in Baffin Bay on the west side of Greenland. We also discuss the role of a higher model resolution on the simulations in reproducing observations. Our study shows that progress in modeling how Greenland melt affects the nearby ocean is best achieved by improving model resolution so that small‐scale processes can be well represented.Key Points: Greenland freshwater flow yields distinct signatures in temperature and salinity within the upper 100 m. Steric heights and sea level anomalies are sensitive to the Greenland freshwater intrusion especially in Baffin Bay. Increasing the spatial model resolution improves the agreement with observations more than if only Greenland meltwater is included.Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347https://doi.org/10.5281/zenodo.624382
    corecore