35 research outputs found

    High-pressure promoted combustion chamber

    Get PDF
    In the preferred embodiment of the promoted combusiton chamber disclosed herein, a thick-walled tubular body that is capable of withstanding extreme pressures is arranged with removable upper and lower end closures to provide access to the chamber for dependently supporting a test sample of a material being evaluated in the chamber. To facilitate the real-time analysis of a test sample, several pressure-tight viewing ports capable of withstanding the simulated environmental conditions are arranged in the walls of the tubular body for observing the test sample during the course of the test. A replaceable heat-resistant tubular member and replaceable flame-resistant internal liners are arranged to be fitted inside of the chamber for protecting the interior wall surfaces of the combustion chamber during the evaluation tests. Inlet and outlet ports are provided for admitting high-pressure gases into the chamber as needed for performing dynamic analyses of the test sample during the course of an evaluation test

    Test methods for determining the suitability of metal alloys for use in oxygen-enriched environments

    Get PDF
    Materials are more flammable in oxygen rich environments than in air. When the structural elements of a system containing oxygen ignite and burn, the results are often catastrophic, causing loss of equipment and perhaps even human lives. Therefore, selection of the proper metallic and non-metallic materials for use in oxygen systems is extremely important. While test methods for the selection of non-metallic materials have been available for years, test methods for the selection of alloys have not been available until recently. Presented here are several test methods that were developed recently at NASA's White Sands Test Facility (WSTF) to study the ignition and combustion of alloys, including the supersonic and subsonic speed particle impact tests, the frictional heating and coefficient of friction tests, and the promoted combustion test. These test methods are available for commercial use

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 1

    Get PDF
    Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen

    Method for Production of Powders

    Get PDF
    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion

    Advanced Crew Escape Suits (ACES): Particle Impact Test

    Get PDF
    NASA Johnson Space Center (JSC) requested NASA JSC White Sands Test Facility to assist in determining the effects of impaired anodization on aluminum parts in advanced crew escape suits (ACES). Initial investigation indicated poor anodization could lead to an increased risk of particle impact ignition, and a lack of data was prevalent for particle impact of bare (unanodized) aluminum; therefore, particle impact tests were performed. A total of 179 subsonic and 60 supersonic tests were performed with no ignition of the aluminum targets. Based on the resulting test data, WSTF found no increased particle impact hazard was present in the ACES equipment

    Burn-Resistant, Strong Metal-Matrix Composites

    Get PDF
    Ceramic particulate fillers increase the specific strengths and burn resistances of metals: This is the conclusion drawn by researchers at Johnson Space Center's White Sands Test Facility. The researchers had theorized that the inclusion of ceramic particles in metal tools and other metal objects used in oxygen-rich atmospheres (e.g., in hyperbaric chambers and spacecraft) could reduce the risk of fire and the consequent injury or death of personnel. In such atmospheres, metal objects act as ignition sources, creating fire hazards. However, not all metals are equally hazardous: some are more burn-resistant than others are. It was the researchers purpose to identify a burn-resistant, high-specific-strength ceramic-particle/metal-matrix composite that could be used in oxygen-rich atmospheres. The researchers studied several metals. Nickel and cobalt alloys exhibit high burn resistances and are dense. The researchers next turned to ceramics, which they knew do not act as ignition sources. Unlike metals, ceramics are naturally burn-resistant. Unfortunately, they also exhibit low fracture toughnesses

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 2

    Get PDF
    Data from the particle impact tests are presented. Results are provided for the frictional heating tests of pairs of like materials. The materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steel 316, and zironium copper

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 3

    Get PDF
    Data is presented from frictional heating tests on pairs of different materials. Materials tested include: Hastelloy X, Inconel 600, Invar 36, Monel K-500, Monel 400, nickel 200, silicon carbide, stainless steels 316, and zirconium copper. In tests where pairs of different materials were rubbed together, the material rated less resistant to ignition in previous tests appeared to control the resistance to ignition of the pair

    Flow Friction or Spontaneous Ignition?

    Get PDF
    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system

    Burning of CP Titanium (Grade 2) in Oxygen-Enriched Atmospheres

    Get PDF
    The flammability in oxygen-enriched atmospheres of commercially pure (CP) titanium rods as a function of diameter and test gas pressure was determined. Test samples of varying diameters were ignited at the bottom and burned upward in 70% O2/balance N2 and in 99.5+% O2 at various pressures. The burning rate of each ignited sample was determined by observing the apparent regression rate of the melting interface (RRMI) of the burning samples. The burning rate or RRMI increased with decreasing test sample diameter and with increasing test gas pressure and oxygen concentratio
    corecore