18 research outputs found

    Transgene Expression and Transposition Efficiency of Two-Component Sleeping Beauty Transposon Vector Systems Utilizing Plasmid or mRNA Encoding the Transposase

    Get PDF
    The use of two-component transposon plasmid vector systems, namely, a transposase construct and a donor vector carrying the gene of interest (GOI) can accelerate the development of recombinant cell lines. However, the undesired stable transfection of the transposase construct and the sustained expression of the enzyme can cause genetic instability due to the re-mobilization of the previously transposed donor vectors. Using a Sleeping Beauty-derived vector system, we established three recombinant cell pools and demonstrate stable integration of the transposase construct and sustained expression of the transposase over a period of 48 days. To provide an alternative approach, transcripts of the transposase gene were generated in vitro and co-transfected with donor vector plasmid at different ratios and mediating high GOI copy number integrations and expression levels. We anticipate that the use of transposase mRNA will foster further improvements in future cell line development processes

    Process design and optimization towards digital twins for HIV-gag VLP production in HEK293 cells, including purification

    Get PDF
    Despite great efforts to develop a vaccine against human immunodeficiency virus (HIV), which causes AIDS if untreated, no approved HIV vaccine is available to date. A promising class of vaccines are virus-like particles (VLPs), which were shown to be very effective for the prevention of other diseases. In this study, production of HI-VLPs using different 293F cell lines, followed by a three-step purification of HI-VLPs, was conducted. The quality-by-design-based process development was supported by process analytical technology (PAT). The HI-VLP concentration increased 12.5-fold while >80% purity was achieved. This article reports on the first general process development and optimization up to purification. Further research will focus on process development for polishing and formulation up to lyophilization. In addition, process analytical technology and process modeling for process automation and optimization by digital twins in the context of quality-by-design framework will be developed

    Fusoselect: cell-cell fusion activity engineered by directed evolution of a retroviral glycoprotein

    Get PDF
    Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect', a universal procedure allowing the identification and engineering of molecular determinants for cell-cell fusion-activity by directed evolution. The system couples cell-cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell-cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselec

    Fusoselect: cell–cell fusion activity engineered by directed evolution of a retroviral glycoprotein

    Get PDF
    Membrane fusion plays a key role in many biological processes including vesicle trafficking, synaptic transmission, fertilization or cell entry of enveloped viruses. As a common feature the fusion process is mediated by distinct membrane proteins. We describe here ‘Fusoselect’, a universal procedure allowing the identification and engineering of molecular determinants for cell–cell fusion-activity by directed evolution. The system couples cell–cell fusion with the release of retroviral particles, but can principally be applied to membrane proteins of non-viral origin as well. As a model system, we chose a γ-retroviral envelope protein, which naturally becomes fusion-active through proteolytic processing by the viral protease. The selection process evolved variants that, in contrast to the parental protein, mediated cell–cell fusion in absence of the viral protease. Detailed analysis of the variants revealed molecular determinants for fusion competence in the cytoplasmic tail (CT) of retroviral Env proteins and demonstrated the power of Fusoselect

    Novel suspension retroviral packaging cells generated by transposition using transposase encoding mRNA advance vector yields and enable production in bioreactors

    Get PDF
    To date, the establishment of high-titer stable viral packaging cells (VPCs) at large scale for gene therapeutic applications is very time- and cost-intensive. Here we report the establishment of three human suspension 293-F-derived ecotropic MLV-based VPCs. The classic stable transfection of an EGFP-expressing transfer vector resulted in a polyclonal VPC pool that facilitated cultivation in shake flasks of 100 mL volumes and yielded high functional titers of more than 1 × 106 transducing units/mL (TU/mL). When the transfer vector was flanked by transposon terminal inverted repeats (TIRs) and upon co-transfection of a plasmid encoding for the transposase, productivities could be slightly elevated to more than 3 × 106 TU/mL. In contrast and using mRNA encoding for the transposase, as a proof of concept, productivities were drastically improved by more than ten-fold exceeding 5 × 107 TU/mL. In addition, these VPC pools were generated within only 3 weeks. The production volume was successfully scaled up to 500 mL employing a stirred-tank bioreactor (STR). We anticipate that the stable transposition of transfer vectors employing transposase transcripts will be of utility for the future establishment of high-yield VPCs producing pseudotype vector particles with a broader host tropism on a large scale

    Generation of Antibodies Selectively Recognizing Epitopes in a Formaldehyde-Fixed Cell-Surface Antigen Using Virus-like Particle Display and Hybridoma Technology

    Get PDF
    Efficient induction of target-specific antibodies can be elicited upon immunization with highly immunogenic virus-like particles (VLPs) decorated with desired membrane-anchored target antigens (Ags). However, for example, for diagnostic purposes, monoclonal antibodies (mAbs) are required to enable the histological examination of formaldehyde-fixed paraffin-embedded (FFPE) biopsy tissue samples. Aiming at the generation of FFPE-antigen-specific mAbs and as a proof of concept (POC), we first established a simplified protocol using only formaldehyde and 90 °C heat fixation (FF90) of cells expressing the target Ag nerve growth factor receptor (NGFR). The FF90 procedure was validated using flow cytometric analysis and two mAbs recognizing either the native and FFPE-Ag or exclusively the native Ag. C-terminally truncated NGFR (trNGFR)-displaying native and FF90-treated VLPs derived from HIV-1 did not reveal distinctive changes in particle morphology using transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Mice were subsequently repetitively immunized with trNGFR-decorated FF90-VLPs and hybridoma technology was used to establish mAb-producing cell clones. In multiple screening rounds, nine cell clones were identified producing mAbs distinctively recognizing epitopes in FF90- and FFPE-NGFR. This POC of a new methodology should foster the future generation of mAbs selectively targeting FFPE-fixed cell-surface Ags

    Production of retroviral vectors in continuous high cell density culture

    Get PDF
    Abstract: Retroviral vectors derived from murine leukemia virus (MLV) are used in somatic gene therapy applications e.g. for genetic modification of hematopoietic stem cells. Recently, we reported on the establishment of a suspension viral packaging cell line (VPC) for the production of MLV vectors. Human embryonic kidney 293-F (HEK293-F) cells were genetically modified for this purpose using transposon vector technology. Here, we demonstrate the establishment of a continuous high cell density (HCD) process using this cell line. First, we compared different media regarding the maximum achievable viable cell concentration (VCC) in small scale. Next, we transferred this process to a stirred tank bioreactor before we applied intensification strategies. Specifically, we established a perfusion process using an alternating tangential flow filtration system. Here, VCCs up to 27.4E + 06 cells/mL and MLV vector titers up to 8.6E + 06 transducing units/mL were achieved. Finally, we established a continuous HCD process using a tubular membrane for cell retention and continuous viral vector harvesting. Here, the space-time yield was 18-fold higher compared to the respective batch cultivations. Overall, our results clearly demonstrate the feasibility of HCD cultivations for high yield production of viral vectors, especially when combined with continuous viral vector harvesting. Key points: • A continuous high cell density process for MLV vector production was established • The tubular cell retention membrane allowed for continuous vector harvesting • The established process had a 18-fold higher space time yield compared to a batc

    Transposon Vector-Mediated Stable Gene Transfer for the Accelerated Establishment of Recombinant Mammalian Cell Pools Allowing for High-Yield Production of Biologics

    No full text
    Stable recombinant mammalian cells are of growing importance in pharmaceutical biotechnology production scenarios for biologics such as monoclonal antibodies, growth and blood factors, cytokines and subunit vaccines. However, the establishment of recombinant producer cells using classical stable transfection of plasmid DNA is hampered by low stable gene transfer efficiencies. Consequently, subsequent selection of transgenic cells and the screening of clonal cell populations are time- and thus cost-intensive. To overcome these limitations, expression cassettes were embedded into transposon-derived donor vectors. Upon the co-transfection with transposase-encoding constructs, elevated vector copy numbers stably integrated into the genomes of the host cells are readily achieved facilitating under stringent selection pressure the establishment of cell pools characterized by sustained and high-yield recombinant protein production. Here, we discuss some aspects of transposon vector technologies, which render these vectors promising candidates for their further utilization in the production of biologics

    A Hydrodynamic Approach to the Study of HIV Virus-Like Particle (VLP) Tangential Flow Filtration

    Get PDF
    Emerging as a promising pathway to HIV vaccines, Virus-Like Particles (VLPs) have drawn considerable attention in recent years. A challenge of working with HIV VLPs in biopharmaceutical processes is their low rigidity, and factors such as shear stress, osmotic pressure and pH variation have to be reduced during their production. In this context, the purification and concentration of VLPs are often achieved by means of Tangential Flow Filtration (TFF) involving ultrafiltration hollow fiber modules. Despite the urgent need for robust upscaling strategies and further process cost reduction, very little attention has been dedicated to the identification of the mechanisms limiting the performance of HIV VLP TFF processes. In this work, for the first time, a hydrodynamic approach based on particle friction was successfully developed as a methodology for both the optimization and the upscaling of HIV VLP TFF. Friction forces acting on near-membrane HIV VLPs are estimated, and the plausibility of the derived static coefficients of friction is discussed. The particle friction-based model seems to be very suitable for the fitting of experimental data related to HIV VLP TFF as well as for upscaling projections. According to our predictions, there is still considerable room for improvement of HIV VLP TFF, and operating this process at slightly higher flow velocities may dramatically enhance the efficiency of VLP purification and concentration. This work offers substantial guidance to membrane scientists during the design of upscaling strategies for HIV VLP TFF
    corecore