1,493 research outputs found
Spin dynamics in high-mobility two-dimensional electron systems
Understanding the spin dynamics in semiconductor heterostructures is highly
important for future semiconductor spintronic devices. In high-mobility
two-dimensional electron systems (2DES), the spin lifetime strongly depends on
the initial degree of spin polarization due to the electron-electron
interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an
effective out-of-plane magnetic field and thus reduces the spin-flip rate. By
time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin
lifetime is increased by an order of magnitude as the initial spin polarization
degree is raised from the low-polarization limit to several percent. We perform
control experiments to decouple the excitation density in the sample from the
spin polarization degree and investigate the interplay of the internal HF field
and an external perpendicular magnetic field. The lifetime of spins oriented in
the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and
Dresselhaus spin-orbit fields are of the same order of magnitude. This
anisotropy, which stems from the interference of the Rashba and the Dresselhaus
spin-orbit fields, is highly density-dependent: as the electron density is
increased, the kubic Dresselhaus term becomes dominant and reduces the
anisotropy.Comment: 13 pages, 6 figure
Moment tensor solutions for the Iberian-Maghreb region during the IberArray deployment (2009–2013)
AbstractWe perform regional moment tensor inversion for 84 earthquakes that occurred in the Iberian-Maghreb region during the second and third leg of IberArray deployment (2009–2013). During this period around 300 seismic broadband stations were operating in the area, reducing the interstation spacing to ~50km over extended areas. We use the established processing sequence of the IAG moment tensor catalogue, increasing to 309 solutions with this update. New moment tensor solutions present magnitudes ranging from Mw 3.2 to 6.3 and source depths from 2 to 620km. Most solutions correspond to Northern Algeria, where a compressive deformation pattern is consolidated. The Betic-Rif sector shows a progression of faulting styles from mainly shear faulting in the east via predominantly extension in the central sector to reverse and strike-slip faulting in the west. At the SW Iberia margin, the predominance of strike-slip and reverse faulting agrees with the expected transpressive character of the Eurasian-Nubia plate boundary. New strike-slip and oblique reverse solutions in the Trans-Alboran Shear Zone reflect its left-lateral regime. The most significant improvement corresponds to the Atlas Mountains and the surroundings of the Gibraltar Arc with scarce previous solutions. Reverse and strike-slip faulting solutions in the Atlas System display the accommodation of plate convergence by shortening in the belt. At the Gibraltar Arc, several new solutions were obtained at lower crustal and subcrustal depths. These mechanisms show substantial heterogeneity, covering the full range of faulting styles with highly variable orientations of principal stress axes, including opposite strike slip faulting solutions at short distance. The observations are not straightforward to explain by a simple geodynamic scenario and suggest the interplay of different processes, among them plate convergence in old oceanic lithospheric with large brittle thickness at the SW Iberia margin, as well as delamination of thickened continental lithosphere beneath the Betic-Rif arc
Extended fault inversion with random slipmaps: a resolution test for the 2012 Mw 7.6 Nicoya, Costa Rica earthquake
Inversions for the full slip distribution of earthquakes provide detailed models of earthquake sources, but stability and non-uniqueness of the inversions is a major concern. The problem is underdetermined in any realistic setting, and significantly different slip distributions may translate to fairly similar seismograms. In such circumstances, inverting for a single best model may become overly dependent on the details of the procedure. Instead, we propose to perform extended fault inversion trough falsification. We generate a representative set of heterogeneous slipmaps, compute their forward predictions, and falsify inappropriate trial models that do not reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial models forms our set of coequal solutions. The solution set may contain only members with similar slip distributions, or else uncover some fundamental ambiguity such as, for example, different patterns of main slip patches. For a feasibility study, we use teleseismic body wave recordings from the 2012 September 5 Nicoya, Costa Rica earthquake, although the inversion strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle the forward problem. We generate 10 000 pseudo-random, heterogeneous slip distributions assuming a von Karman autocorrelation function, keeping the rake angle, rupture velocity and slip velocity function fixed. The slip distribution of the 2012 Nicoya earthquake turns out to be relatively well constrained from 50 teleseismic waveforms. Two hundred fifty-two slip models with normalized L1-fit within 5 per cent from the global minimum from our solution set. They consistently show a single dominant slip patch around the hypocentre. Uncertainties are related to the details of the slip maximum, including the amount of peak slip (2–3.5 m), as well as the characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns such as Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct more distributed slip from teleseismic data
Resolution of rupture directivity in weak events: 1-D versus 2-D source parameterizations for the 2011, M-w 4.6 and 5.2 Lorca earthquakes, Spain
Resolving robust source parameters of small-moderate magnitude earthquakes is still a challenge in seismology. We infer directivity from apparent source time functions (ASTFs) at regional distance and quantify the associated uncertainties. ASTFs are used for (i) modeling a propagating 1-D line source from the duration data and (ii) inverting the 2-D slip distribution from the full signals. Slip inversion is performed through a Popperian scheme, where random trial models are either falsified on account of large misfit, or else become members of the solution set of the inverse problem. We assess the resolution of rupture directivity representing centroid shifts from the solution set in a rose diagram. Using as example an event with well-studied rupture directivity, the 2011 Mw 5.2 Lorca (Spain) earthquake, 1-D and 2-D parameterizations yield similar estimates for direction (N213°E and N220°E, respectively) and asymmetry (67:33, 65:35) of rupture propagation, as well as rupture length (2.1 km, 2.7 km) and speed (3.5 km/s, 3.25 km/s). The high rupture velocity ≥ 90% vS may be held primarily responsible for the strong directivity effect of this earthquake. We show that inversion of apparent source durations is intrinsically unable to resolve highly asymmetric bilateral ruptures, while inversion of full ASTFs misses part of the signal's complexity, suggesting the presence of deconvolution artifacts. We extend the analysis to the Mw 4.6 foreshock of the Lorca earthquake, inferring similar directivity parameters and slip pattern as for the mainshock. The rupture toward SW of both earthquakes suggests that this direction could be inherent to the fault segment
Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set
BACKGROUND: Setosphaeria turcica is a fungal pathogen that causes northern corn leaf blight (NCLB) which is a serious foliar disease in maize. In order to unravel the genetic architecture of the resistance against this disease, a vast association mapping panel comprising 1487 European maize inbred lines was used to (i) identify chromosomal regions affecting flowering time (FT) and northern corn leaf blight (NCLB) resistance, (ii) examine the epistatic interactions of the identified chromosomal regions with the genetic background on an individual molecular marker basis, and (iii) dissect the correlation between NCLB resistance and FT. RESULTS: The single marker analyses performed for 8 244 single nucleotide polymorphism (SNP) markers revealed seven, four, and four SNP markers significantly (α=0.05, amplicon wise Bonferroni correction) associated with FT, NCLB, and NCLB resistance corrected for FT, respectively. These markers explained individually between 0.36 and 14.29% of the genetic variance of the corresponding trait. CONCLUSIONS: The very well interpretable pattern of SNP associations observed for FT suggested that data from applied plant breeding programs can be used to dissect polygenic traits. This in turn indicates that the associations identified for NCLB resistance might be successfully used in marker-assisted selection programs. Furthermore, the associated genes are also of interest for further research concerning the mechanism of resistance to NCLB and plant diseases in general, because some of the associated genes have not been mentioned in this context so far
A dam passage performance standard model for American shad
Objectives for recovery of alosines commonly involve improving fish passage at dams during migration. However, a quantitative basis for dam passage performance standards is largely absent. We describe development of a stochastic life-history-based simulation model for American shad, Alosa sapidissima, to estimate effects of dam passage and migratory delay on abundance, spatial distribution of spawning adults, and demographic structuring in space and time. We used the Penobscot River, Maine, USA, as a case study to examine sensitivity of modeled population metrics and probability of achieving specific management goals to inputs. Spawner abundance and percentage of repeat spawners were most sensitive to survival and migration delay at dams, marine survival, and temperature cues for migratory events. Recovery objectives related to abundance and spatial distribution of spawners were achievable under multiple scenarios, but high rates of upstream and downstream passage were necessary. The simulation indicated trade-offs between upstream and downstream passage efficacy whereby increased downstream passage was required to maintain or increase population abundance in conjunction with increased upstream passage. This model provides a quantitative support tool for managers to inform ecologically based decisions about a suite of management scenarios to facilitate recovery and sustainability of diadromous fish populations
Generation of finite wave trains in excitable media
Spatiotemporal control of excitable media is of paramount importance in the
development of new applications, ranging from biology to physics. To this end
we identify and describe a qualitative property of excitable media that enables
us to generate a sequence of traveling pulses of any desired length, using a
one-time initial stimulus. The wave trains are produced by a transient
pacemaker generated by a one-time suitably tailored spatially localized finite
amplitude stimulus, and belong to a family of fast pulse trains. A second
family, of slow pulse trains, is also present. The latter are created through a
clumping instability of a traveling wave state (in an excitable regime) and are
inaccessible to single localized stimuli of the type we use. The results
indicate that the presence of a large multiplicity of stable, accessible,
multi-pulse states is a general property of simple models of excitable media.Comment: 6 pages, 6 figure
Effect of initial spin polarization on spin dephasing and electron g factor in a high-mobility two-dimensional electron system
We have investigated the spin dynamics of a high-mobility two-dimensional
electron system (2DES) in a GaAs--AlGaAs single quantum well by
time-resolved Faraday rotation (TRFR) in dependence on the initial degree of
spin polarization, , of the 2DES. From to %, we observe
an increase of the spin dephasing time, , by an order of magnitude,
from about 20 ps to 200 ps, in good agreement with theoretical predictions by
Weng and Wu [Phys. Rev. B {\bf 68}, 075312 (2003)]. Furthermore, by applying an
external magnetic field in the Voigt configuration, also the electron
factor is found to decrease for increasing . Fully microscopic calculations,
by numerically solving the kinetic spin Bloch equations considering the
D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms, reproduce the most
salient features of the experiments, {\em i.e}., a dramatic decrease of spin
dephasing and a moderate decrease of the electron factor with increasing
. We show that both results are determined dominantly by the Hartree-Fock
contribution of the Coulomb interaction.Comment: 4 pages, 4 figures, to be published in PR
In Defence of Modest Doxasticism About Delusions
Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u
Genomic prediction of the recombination rate variation in barley - A route to highly recombinogenic genotypes
Meiotic recombination is not only fundamental to the adaptation of sexually reproducing eukaryotes in nature but increased recombination rates facilitate the combination of favourable alleles into a single haplotype in breeding programmes. The main objectives of this study were to (i) assess the extent and distribution of the recombination rate variation in cultivated barley (Hordeum vulgare L.), (ii) quantify the importance of the general and specific recombination effects, and (iii) evaluate a genomic selection approach’s ability to predict the recombination rate variation. Genetic maps were created for the 45 segregating populations that were derived from crosses among 23 spring barley inbreds with origins across the world. The genome‐wide recombination rate among populations ranged from 0.31 to 0.73 cM/Mbp. The crossing design used in this study allowed to separate the general recombination effects (GRE) of individual parental inbreds from the specific recombination effects (SRE) caused by the combinations of parental inbreds. The variance of the genome‐wide GRE was found to be about eight times the variance of the SRE. This finding indicated that parental inbreds differ in the efficiency of their recombination machinery. The ability to predict the chromosome or genome‐wide recombination rate of an inbred ranged from 0.80 to 0.85. These results suggest that a reliable screening of large genetic materials for their potential to cause a high extent of genetic recombination in their progeny is possible, allowing to systematically manipulate the recombination rate using natural variation
- …