24 research outputs found

    Comparison of whole-genome amplifications for microsatellite genotyping of \u3ci\u3eRotylenchulus reniformis\u3c/i\u3e

    Get PDF
    Currently, a large number of microsatellites are available for Rotylenchulus reniformis (reniform nematode); however, two barriers exist for genotyping samples from different geographical areas. The limited amount of nucleic acids obtained from single nematodes which would require their multiplication to obtain enough DNA for testing; and the strictly regulated transport of live samples and multiplication in greenhouse for being a plant pathogen. Whole-genome amplification (WGA) of samples consisting of one and five dead gravid females with their associated egg masses was successfully performed on disrupted tissue using three commercial kits. DNA yield after WGA ranged from 0.5 to 8 ÎĽg and was used to test 96 microsatellite markers we previously developed for the reniform nematode. The results were compared to those of fingerprinting the original population (MSRR03). Out of 96 markers tested, 71 had amplicons in MSRR03. Using WGA of single gravid females with their associated egg masses, 86-93% of the alleles found on MSRR03 were detected, and 87-88% of the alleles found on MSRR03 when using WGA of samples composed of five gravid females with their associated egg masses as template. Our results indicate that reniform nematode samples as small as a single gravid female with her associated egg mass can be used in WGA and direct testing with microsatellites, giving consistent results when compared to the original population

    Comparison of whole-genome amplifications for microsatellite genotyping of \u3ci\u3eRotylenchulus reniformis\u3c/i\u3e

    Get PDF
    Currently, a large number of microsatellites are available for Rotylenchulus reniformis (reniform nematode); however, two barriers exist for genotyping samples from different geographical areas. The limited amount of nucleic acids obtained from single nematodes which would require their multiplication to obtain enough DNA for testing; and the strictly regulated transport of live samples and multiplication in greenhouse for being a plant pathogen. Whole-genome amplification (WGA) of samples consisting of one and five dead gravid females with their associated egg masses was successfully performed on disrupted tissue using three commercial kits. DNA yield after WGA ranged from 0.5 to 8 ÎĽg and was used to test 96 microsatellite markers we previously developed for the reniform nematode. The results were compared to those of fingerprinting the original population (MSRR03). Out of 96 markers tested, 71 had amplicons in MSRR03. Using WGA of single gravid females with their associated egg masses, 86-93% of the alleles found on MSRR03 were detected, and 87-88% of the alleles found on MSRR03 when using WGA of samples composed of five gravid females with their associated egg masses as template. Our results indicate that reniform nematode samples as small as a single gravid female with her associated egg mass can be used in WGA and direct testing with microsatellites, giving consistent results when compared to the original population

    Comparison of whole-genome amplifications for microsatellite genotyping of Rotylenchulus reniformis

    Get PDF
    Currently, a large number of microsatellites are available for Rotylenchulus reniformis (reniform nematode); however, two barriers exist for genotyping samples from different geographical areas. The limited amount of nucleic acids obtained from single nematodes which would require their multiplication to obtain enough DNA for testing; and the strictly regulated transport of live samples and multiplication in greenhouse for being a plant pathogen. Whole-genome amplification (WGA) of samples consisting of one and five dead gravid females with their associated egg masses was successfully performed on disrupted tissue using three commercial kits. DNA yield after WGA ranged from 0.5 to 8 \ub5g and was used to test 96 microsatellite markers we previously developed for the reniform nematode. The results were compared to those of fingerprinting the original population (MSRR03). Out of 96 markers tested, 71 had amplicons in MSRR03. Using WGA of single gravid females with their associated egg masses, 86-93% of the alleles found on MSRR03 were detected, and 87-88% of the alleles found on MSRR03 when using WGA of samples composed of five gravid females with their associated egg masses as template. Our results indicate that reniform nematode samples as small as a single gravid female with her associated egg mass can be used in WGA and direct testing with microsatellites, giving consistent results when compared to the original population

    Cotton ( Gossypium hirsutum

    Get PDF
    A field study was conducted over a two-year period (2006-2007) at the Delta Research and Extension Center, Stoneville, MS, USA to screen selected entries in the 2006 Mississippi Cotton Variety Trials for tolerance to the reniform nematode (Rotylenchulus reniformis). Trials were conducted in nonirrigated fields with primarily sandy loam soils. Though some variability was noted between test locations and years, six of 13 cotton (Gossypium hirsutum) cultivars tested were considered tolerant to the reniform nematode: “Cropland Genetics 3520 B2RF,” “DynaGrow 2520 B2RF,” “Stoneville 5242 BR,” “Stoneville 5599 BR,” “Deltapine 488 BG/RR,” and “Fibermax 960 B2R.” Of these, the first three exhibited yields similar to the productive cultivar “Deltapine 445 BG/RR” in all environments. Though they will not suppress the reniform nematode population, these cultivars can help reduce economic losses attributed to this pathogen in the Midsouth region of the USA

    Identification and genomic location of a reniform nematode (Rotylenchulus reniformis) resistance locus (Renari) introgressed from Gossypium aridum into upland cotton (G. hirsutum)

    Get PDF
    In this association mapping study, a tri-species hybrid, [Gossypium arboreum × (G. hirsutum × G. aridum)2], was crossed with MD51ne (G. hirsutum) and progeny from the cross were used to identify and map SSR markers associated with reniform nematode (Rotylenchulus reniformis) resistance. Seventy-six progeny (the 50 most resistant and 26 most susceptible) plants were genotyped with 104 markers. Twenty-five markers were associated with a resistance locus that we designated Renari and two markers, BNL3279_132 and BNL2662_090, mapped within 1 cM of Renari. Because the SSR fragments associated with resistance were found in G. aridum and the bridging line G 371, G. aridum is the likely source of this resistance. The resistance is simply inherited, possibly controlled by a single dominant gene. The markers identified in this project are a valuable resource to breeders and geneticists in the quest to produce cotton cultivars with a high level of resistance to reniform nematode

    Genome-wide association study of Gossypium arboreum resistance to reniform nematode

    No full text
    Abstract Background Reniform nematode (Rotylenchulus reniformis) has emerged as one of the most destructive root pathogens of upland cotton (Gossypium hirsutum) in the United States. Management of R. reniformis has been hindered by the lack of resistant G. hirsutum cultivars; however, resistance has been frequently identified in germplasm accessions from the G. arboreum collection. To determine the genetic basis of reniform nematode resistance, a genome-wide association study (GWAS) was performed using 246 G. arboreum germplasm accessions that were genotyped with 7220 single nucleotide polymorphic (SNP) sequence markers generated from genotyping-by-sequencing. Results Fifteen SNPs representing 12 genomic loci distributed over eight chromosomes showed association with reniform nematode resistance. For 14 SNPs, major alleles were shown to be associated with resistance. From the 15 significantly associated SNPs, 146 genes containing or physically close to these loci were identified as putative reniform nematode resistance candidate genes. These genes are involved in a broad range of biological pathways, including plant innate immunity, transcriptional regulation, and redox reaction that may have a role in the expression of resistance. Eighteen of these genes corresponded to differentially expressed genes identified from G. hirsutum in response to reniform nematode infection. Conclusions The identification of multiple genomic loci associated with reniform nematode resistance would indicate that the G. arboreum collection is a significant resource of novel resistance genes. The significantly associated markers identified from this GWAS can be used for the development of molecular tools for breeding improved reniform nematode resistant upland cotton with resistance introgressed from G. arboreum. Additionally, a greater understanding of the molecular mechanisms of reniform nematode resistance can be determined through genetic structure and functional analyses of candidate genes, which will aid in the pyramiding of multiple resistance genes

    Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    No full text
    Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals) determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait) effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a two-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes) in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines). Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source) to seed (sink). This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for food and feed
    corecore