23,749 research outputs found

    Magnetic correlations of the quasi-one-dimensional half-integer spin-chain antiferromagnets SrM2M_2V2_2O8_8 (MM = Co, Mn)

    Full text link
    Magnetic correlations of two iso-structural quasi-one-dimensional (1D) antiferromagnetic spin-chain compounds SrM2M_2V2_2O8_8 (MM = Co, Mn) have been investigated by magnetization and powder neutron diffraction. Two different collinear antiferromagnetic (AFM) structures, characterized by the propagation vectors, kk = (0 0 1) and kk = (0 0 0), have been found below \sim 5.2 K and \sim 42.2 K for the Co- and Mn-compounds, respectively. For the Mn-compound, AFM chains (along the cc axis) order ferromagnetically within the abab plane, whereas, for the Co-compound, AFM chains order ferro-/antiferromagnetically along the a/ba/b direction. The critical exponent study confirms that the Co- and Mn-compounds belong to the Ising and Heisenberg universality classes, respectively. For both compounds, short-range spin-spin correlations are present over a wide temperature range above TNT_N. The reduced ordered moments at base temperature (1.5 K) indicate the presence of quantum fluctuations in both compounds due to the quasi-1D magnetic interactions.Comment: 14 pages, 10 figures, 9 table

    New Limits on Local Lorentz Invariance in Mercury and Cesium

    Full text link
    We report new bounds on Local Lorentz Invariance (LLI) violation in Cs and Hg. The limits are obtained through the observation of the the spin- precession frequencies of 199Hg and 133Cs atoms in their ground states as a function of the orientation of an applied magnetic field with respect to the fixed stars. We measure the amplitudes of the dipole couplings to a preferred direction in the equatorial plane to be 19(11) nHz for Hg and 9(5) microHz for Cs. The upper bounds established here improve upon previous bounds by about a factor of four. The improvement is primarily due to mounting the apparatus on a rotating table. New bounds are established on several terms in the standard model extension including the first bounds on the spin-couplings of the neutron and proton to the z direction, <7e-30 GeV and <7e-29 GeV, respectively.Comment: 17 pages, 6 figure

    Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses

    Full text link
    Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.Comment: 16 pages, 10 figure

    The Order of Phase Transitions in Barrier Crossing

    Full text link
    A spatially extended classical system with metastable states subject to weak spatiotemporal noise can exhibit a transition in its activation behavior when one or more external parameters are varied. Depending on the potential, the transition can be first or second-order, but there exists no systematic theory of the relation between the order of the transition and the shape of the potential barrier. In this paper, we address that question in detail for a general class of systems whose order parameter is describable by a classical field that can vary both in space and time, and whose zero-noise dynamics are governed by a smooth polynomial potential. We show that a quartic potential barrier can only have second-order transitions, confirming an earlier conjecture [1]. We then derive, through a combination of analytical and numerical arguments, both necessary conditions and sufficient conditions to have a first-order vs. a second-order transition in noise-induced activation behavior, for a large class of systems with smooth polynomial potentials of arbitrary order. We find in particular that the order of the transition is especially sensitive to the potential behavior near the top of the barrier.Comment: 8 pages, 6 figures with extended introduction and discussion; version accepted for publication by Phys. Rev.

    Cost-effectiveness of bevacizumab for diabetic macular oedema

    Get PDF
    This is the author accepted manuscript. The final version is available from Mark Allen Healthcare via the DOI in this record A Markov model was developed to predict the outcomes and cost-effectiveness of bevacizumab compared to macular laser therapy for diabetes patients with clinically significant macular oedema (CSMO). This study used outcome data from a randomised controlled trial, utility data and health states from a ranibizumab health technology assessment, and costs from the UK national tariff. A total of 37.73% of patients treated with bevacizumab in the model had a visual acuity of at least 76 Early Treatment Diabetic Retinopathy Study Research Group (ETDRS) letters after four years, compared with 4.09% of laser therapy patients. Only 0.11% of bevacizumab patients were blind after four years compared with 6.45% of laser therapy patients. However, with an incremental cost-effectiveness ratio of £51,182, we predict that bevacizumab would not be cost-effective compared to laser therapy because of the influence of the NHS national tariff costs for monitoring patients and administering bevacizumab, and the inability of the EQ-5D measure to capture the impact of sensory deprivation on quality of life sufficiently. This study recommends significant caution when interpreting the results of cost-effectiveness analyses of interventions that involve vision-related interventions.National Institute for Health Research (NIHR

    Can the retinal screening interval be safely increased to 2 years for type 2 diabetic patients without retinopathy?

    Get PDF
    This is the final version. Available from American Diabetes Association via the DOI in this recordOBJECTIVE: In the U.K., people with diabetes are typically screened for retinopathy annually. However, diabetic retinopathy sometimes has a slow progression rate. We developed a simulation model to predict the likely impact of screening patients with type 2 diabetes, who have not been diagnosed with diabetic retinopathy, every 2 years rather than annually. We aimed to assess whether or not such a policy would increase the proportion of patients who developed retinopathy-mediated vision loss compared with the current policy, along with the potential cost savings that could be achieved. RESEARCH DESIGN AND METHODS: We developed a model that simulates the progression of retinopathy in type 2 diabetic patients, and the screening of these patients, to predict rates of retinopathy-mediated vision loss. We populated the model with data obtained from a National Health Service Foundation Trust. We generated comparative 15-year forecasts to assess the differences between the current and proposed screening policies. RESULTS The simulation model predicts that implementing a 2-year screening interval for type 2 diabetic patients without evidence of diabetic retinopathy does not increase their risk of vision loss. Furthermore, we predict that this policy could reduce screening costs by ~25%. CONCLUSIONS: Screening people with type 2 diabetes, who have not yet developed retinopathy, every 2 years, rather than annually, is a safe and cost-effective strategy. Our findings support those of other studies, and we therefore recommend a review of the current National Institute for Health and Clinical Excellence (NICE) guidelines for diabetic retinopathy screening implemented in the U.K.National Institute for Health Research (NIHR

    Breakdown of Strong-Coupling Perturbation Theory in Doped Mott Insulators

    Full text link
    We show that doped Mott insulators, such as the copper-oxide superconductors, are asymptotically slaved in that the quasiparticle weight, ZZ, near half-filling depends critically on the existence of the high energy scale set by the upper Hubbard band. In particular, near half filling, the following dichotomy arises: Z0Z\ne 0 when the high energy scale is integrated out but Z=0 in the thermodynamic limit when it is retained. Slavery to the high energy scale arises from quantum interference between electronic excitations across the Mott gap. Broad spectral features seen in photoemission in the normal state of the cuprates are argued to arise from high energy slavery.Comment: Published versio

    Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements

    Get PDF
    We present the design and operation of an ytterbium ion trap experiment with a setup offering versatile optical access and 90 electrical interconnects that can host advanced surface and multilayer ion trap chips mounted on chip carriers. We operate a macroscopic ion trap compatible with this chip carrier design and characterize its performance, demonstrating secular frequencies >1 MHz, and trap and cool nearly all of the stable isotopes, including 171Yb+ ions, as well as ion crystals. For this particular trap we measure the motional heating rate 〈ṅ〉 and observe an 〈ṅ〉∝1/ω2 behavior for different secular frequencies ω. We also determine a spectral noise density SE(1 MHz)=3.6(9)×10-11 V2 m-2 Hz-1 at an ion electrode spacing of 310(10) μm. We describe the experimental setup for trapping and cooling Yb+ ions and provide frequency measurements of the 2S1/2↔2P1/2 and 2D3/2↔3D[3/2]1/2 transitions for the stable 170Yb+, 171Yb+, 172Yb+, 174Yb+, and 176Yb+ isotopes which are more precise than previously published work

    A cancer cell-line titration series for evaluating somatic classification.

    Get PDF
    BackgroundAccurate detection of somatic single nucleotide variants and small insertions and deletions from DNA sequencing experiments of tumour-normal pairs is a challenging task. Tumour samples are often contaminated with normal cells confounding the available evidence for the somatic variants. Furthermore, tumours are heterogeneous so sub-clonal variants are observed at reduced allele frequencies. We present here a cell-line titration series dataset that can be used to evaluate somatic variant calling pipelines with the goal of reliably calling true somatic mutations at low allele frequencies.ResultsCell-line DNA was mixed with matched normal DNA at 8 different ratios to generate samples with known tumour cellularities, and exome sequenced on Illumina HiSeq to depths of &gt;300×. The data was processed with several different variant calling pipelines and verification experiments were performed to assay &gt;1500 somatic variant candidates using Ion Torrent PGM as an orthogonal technology. By examining the variants called at varying cellularities and depths of coverage, we show that the best performing pipelines are able to maintain a high level of precision at any cellularity. In addition, we estimate the number of true somatic variants undetected as cellularity and coverage decrease.ConclusionsOur cell-line titration series dataset, along with the associated verification results, was effective for this evaluation and will serve as a valuable dataset for future somatic calling algorithm development. The data is available for further analysis at the European Genome-phenome Archive under accession number EGAS00001001016. Data access requires registration through the International Cancer Genome Consortium's Data Access Compliance Office (ICGC DACO)
    corecore