1,246 research outputs found

    Absorption of High Energy Gamma Rays by Interactions with Extragalactic Starlight Photons at High Redshifts

    Get PDF
    We extend earlier calculations of the attenuation suffered by gamma rays during their propagation from extragalactic sources, obtaining new extinction curves for gamma rays down to 10 GeV in energy, from sources up to a redshift of z=3.Comment: 5 pages, 3 imbedded EPS figures; requires aipproc macros (not included). To be published in Proceedings of the 4th Compton Symposium (1997

    Testing Relativity at High Energies Using Spaceborne Detectors

    Get PDF
    (ABRIDGED) The Gamma-ray Large Area Space Telescope (GLAST) will measure the spectra of distant extragalactic sources of high energy gamma-rays. GLAST can look for energy dependent propagation effects from such sources as a signal of Lorentz invariance violation (LIV). Such sources should also exhibit high energy spectral cutoffs from pair production interactions with low energy photons. The properties of such cutoffs can also be used to test LIV. Detectors to measure gamma-ray polarization can look for the depolarizing effect of space-time birefingence predicted by loop quantum gravity. A spaceborne detector array looking down on Earth to study extensive air showers produced by ultrahigh energy cosmic rays can study their spectral properties and look for a possible deviation from the predicted GZK effect as another signal of LIV.Comment: 14 pages, Text of invitated talk presented at the "From Quantum to Cosmos: Fundamental Physics Studies from Space" meeting. More references adde

    Comment on ``Cosmological Gamma Ray Bursts and the Highest Energy Cosmic Rays''

    Get PDF
    In a letter with the above title, published some time ago in PRL, Waxman made the interesting suggestion that cosmological gamma ray bursts (GRBs) are the source of the ultra high energy cosmic rays (UHECR). This has also been proposed independently by Milgrom and Usov and by Vietri. However, recent observations of GRBs and their afterglows and in particular recent data from the Akeno Great Air Shwoer Array (AGASA) on UHECR rule out extragalactic GRBs as the source of UHECR.Comment: Comment on a letter with the above title published by E. Waxman in PRL 75, 386 (1995). Submitted for publication in PRL/Comment

    Corrected Table for the Parametric Coefficients for the Optical Depth of the Universe to Gamma-rays at Various Redshifts

    Get PDF
    Table 1 in our paper, ApJ 648, 774 (2006) entitled "Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays" had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays. The correct values for these parameters as described in the original text are given here in a corrected table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift. The parametric approximation is good for optical depths between 0.01 and 100 and for gamma-ray energies up to ~2 TeV for all redshifts but also for energies up to ~10 TeV for redshifts less than 1.Comment: Table 1 corrected and new gamma-ray energy range of validity give

    Observability of the neutrino flux from the inner region of the galactic disk

    Get PDF
    The observability of galactic neutrinos in a detector of 10 billion tons of water with an observing time of a few years is explored. Although the atmospheric flux exceeds the galactic flux considerably at energies greater than or equal to 1 TeV, the latter may still provide a marginally observable signal owing to its directionality. Galactic muon neutrinos with energy greater than or equal to 1 TeV will produce a signal approximately 2 sigma above the atmospheric background over a four year period. If electron neutrinos can also be studied with the deep underwater muon and neutrino detector, then galactic electron neutrinos above 1 TeV would give an approximate 4 to 5 sigma signal above the electron neutrino background over a four year integration time

    Effect of neural connectivity on autocovariance and cross covariance estimates

    Get PDF
    BACKGROUND: Measurements of auto and cross covariance functions are frequently used to investigate neural systems. In interpreting this data, it is commonly assumed that the largest contribution to the recordings comes from sources near the electrode. However, the potential recorded at an electrode represents the superimposition of the potentials generated by large numbers of active neural structures. This creates situations under which the measured auto and cross covariance functions are dominated by the activity in structures far from the electrode and in which the distance dependence of the cross-covariance function differs significantly from that describing the activity in the actual neural structures. METHODS: Direct application of electrostatics to calculate the theoretical auto and cross covariance functions that would be recorded from electrodes immersed in a large volume filled with active neural structures with specific statistical properties. RESULTS: It is demonstrated that the potentials recorded from a monopolar electrode surrounded by dipole sources in a uniform medium are predominantly due to activity in neural structures far from the electrode when neuronal correlations drop more slowly than 1/r(3 )or when the size of the neural system is much smaller than a known correlation distance. Recordings from quadrupolar sources are strongly dependent on distant neurons when correlations drop more slowly than 1/r or the size of the system is much smaller than the correlation distance. Differences between bipolar and monopolar recordings are discussed. It is also demonstrated that the cross covariance of the recorded in two spatially separated electrodes declines as a power-law function of the distance between them even when the electrical activity from different neuronal structures is uncorrelated. CONCLUSION: When extracellular electrophysiologic recordings are made from systems containing large numbers of neural structures, it is important to interpret measured auto and cross covariance functions cautiously in light of the long range nature of the electric fields. Using recording electrodes that are bipolar or quadrupolar minimizes or eliminates these effects and hence these electrodes are preferred when electrical recordings are made for the purpose of auto and cross correlation analysis of local electrical activity

    Contribution to the Extragalactic Gamma-ray Background from the Cascades of Very-high Energy Gamma Rays

    Full text link
    As very-high--energy photons propagate through the extragalactic background light (EBL), they interact with the soft photons and initiate electromagnetic cascades of lower energy photons and electrons. The collective intensity of a cosmological population emitting at very-high energies (VHE) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. We calculate the cascade radiation created by VHE photons produced by blazars and investigate the effects of cascades on the collective intensity of blazars and the resulting effects on the extragalactic gamma-ray background. We find that cascade radiation greatly enhances the collective intensity from blazars at high energies before turning over due to attenuation. The prominence of the resulting features depends on the blazar gamma-ray luminosity function, spectral index distribution, and the model of the EBL. We additionally calculate the cascade radiation from the distinct spectral sub-populations of blazars, BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs), finding that the collective intensity of BL Lacs is considerably more enhanced by cascade radiation than that of the FSRQs due to their harder spectra. As such, studies of the blazar contribution to the EGRB by Fermi will have profound implications for the nature of the EBL, the evolution of blazars, and blazar spectra.Comment: 2009 Fermi Symposium, eConf Proceedings C09112
    corecore