43 research outputs found

    Use of DES Modeling for Determining Launch Availability for SLS

    Get PDF
    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth's orbit. This effort includes the Space Shuttle derived Space Launch System (SLS), the Multi-Purpose Crew Vehicle (MPCV) "Orion", and the Ground Systems Development and Operations (GSDO). There are several requirements and Technical Performance Measures (TPMs) that have been levied by the Exploration Systems Development (ESD) upon the SLS, MPCV, and GSDO Programs including an integrated Launch Availability (LA) TPM. The LA TPM is used to drive into the SLS, Orion and GSDO designs a high confidence of successfully launching exploration missions that have narrow Earth departure windows. The LA TPM takes into consideration the reliability of the overall system (SLS, Orion and GSDO), natural environments, likelihood of a failure, and the time required to recover from an anomaly. A challenge with the LA TPM is the interrelationships between SLS, Orion, GSDO and the natural environments during launch countdown and launch delays that makes it impossible to develop an analytical solution for calculating the integrated launch probability. This paper provides an overview of how Discrete Event Simulation (DES) modeling was used to develop the LA TPM, how it was allocated down to the individual programs, and how the LA analysis is being used to inform and drive the SLS, Orion, and GSDO designs to ensure adequate launch availability for future human exploration

    Use of DES Modeling for Determining Launch Availability for SLS

    Get PDF
    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth's orbit. This effort includes the Space Shuttle derived Space Launch System (SLS), the Orion Multi-Purpose Crew Vehicle (MPCV), and the Ground Systems Development and Operations (GSDO). There are several requirements and Technical Performance Measures (TPMs) that have been levied by the Exploration Systems Development (ESD) upon the SLS, Orion, and GSDO Programs including an integrated Launch Availability (LA) TPM. The LA TPM is used to drive into the SLS, Orion and GSDO designs a high confidence of successfully launching exploration missions that have narrow Earth departure windows. The LA TPM takes into consideration the reliability of the overall system (SLS, Orion and GSDO), natural environments, likelihood of a failure, and the time required to recover from an anomaly. A challenge with the LA TPM is the interrelationships between SLS, Orion, GSDO and the natural environments during launch countdown and launch delays that makes it impossible to develop an analytical solution for calculating the integrated launch probability. This paper provides an overview of how Discrete Event Simulation (DES) modeling was used to develop the LA TPM, how it was allocated down to the individual programs, and how the LA analysis is being used to inform and drive the SLS, Orion, and GSDO designs to ensure adequate launch availability for future human exploration

    Use of DES Modeling for Determining Launch Availability for SLS

    Get PDF
    (1) NASA is developing a new heavy lift launch system for human and scientific exploration beyond Earth orbit comprising of the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and Ground Systems Development and Operations (GSDO); (2) The desire of the system is to ensure a high confidence of successfully launching the exploration missions, especially those that require multiple launches, have a narrow Earth departure window, and high investment costs; and (3) This presentation discusses the process used by a Cross-Program team to develop the Exploration Systems Development (ESD) Launch Availability (LA) Technical Performance Measure (TPM) and allocate it to each of the Programs through the use of Discrete Event Simulations (DES)

    Real-Time Visualization and Quantitation of Vascular Permeability In Vivo: Implications for Drug Delivery

    Get PDF
    The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors

    Turnaround Time Modeling for Conceptual Rocket Engines

    No full text
    Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs

    Antitrust

    No full text
    In broadest terms, the performance of the Court of Appeals for the Fifth Circuit\u27 in the antitrust area \u27 during 1976 might best be characterized as solid. Although demonstrating little of the innovative yet well-reasoned analysis which distinguished several 1975 decisions, none of this year\u27s antitrust opinions appear to be as susceptible to criticism as were, for example, Eastex Aviation, Inc. v. Sperry & Hutchinson Co. and Cooper Liquor, Inc. v. Adolph Coors Co. Indeed, a substantial portion of the development of the substantive law in 1976 consisted of the court\u27s attempts to clarify some of the implications of certain of its prior rulings.\u2

    Vegetable-derived Magnesium Stearate Functionality Evaluation by DM(3) Approach

    No full text
    This study quantifies the lubricating efficiency of two grades of crystalline vegetable-derived magnesium stearate (MgSt-V) using the DM(3) approach, which utilizes design of experiments (D) and multivariate analysis techniques (M3) to evaluate the effect of a material\u27s (M1) molecular and macroscopic properties and manufacturing factors (M2) on critical product attributes. A 2(3) factorial design (2 continuous variables plus 1 categorical factor) with three center points for each categorical factor was used to evaluate the effect of MgSt-V fraction and blend time on running powder basic flow energy (BFE), tablet mechanical strength (TMS), disintegration time (DT), and running powder lubricant sensitivity ratio (LSR). Molecular characterization of MgSt-V employed moisture sorption-desorption analysis, (13)C nuclear magnetic resonance spectroscopy, thermal analysis, and powder X-ray diffraction. MgSt-V macroscopic analysis included mean particle size, specific surface area, particle morphology, and BFE. Principal component analysis and partial least squares multivariate analysis techniques were used to develop predictive qualitative and quantitative relationships between the molecular and macroscopic properties of MgSt-V grades, design variables, and resulting tablet formulation properties. MgSt-V fraction and blending time and their square effects showed statistical significant effects. Significant variation in the molecular and macroscopic properties of MgSt-V did not have a statistically significant impact on the studied product quality attributes (BFE, TMS, DT, and LSR). In setting excipient release specifications, functional testing may be appropriate in certain cases to assess the effect of statistically significant different molecular and macroscopic properties on product quality attributes

    Tanker Argus: Re-supply for a LEO Cryogenic Propellant Depot

    Get PDF
    53rd International Astronautical Congress, The World Space Congress Houston, TX, October 10-19, 2002.The Argus reusable launch vehicle (RLV) concept is a single-stage-to-orbit (SSTO) conical, wingedbodied vehicle powered by two liquid hydrogen (LH2)/liquid oxygen (LOX) supercharged ejector ramjets (SERJ). The 3rd generation Argus launch vehicle utilizes advanced vehicle technologies along with a magnetic levitation (Maglev) launch assist track. A tanker version of the Argus RLV is envisioned to provide an economical means of providing liquid fuel and oxidizer to an orbiting low Earth orbit (LEO) propellant depot. This depot could then provide propellant to various spacecraft, including reusable orbital transfer vehicles used to ferry space solar power (SSP) satellites to geo-stationary orbit. Two different tanker Argus configurations were analyzed. The first simply places additional propellant tanks inside the payload bay of an existing Argus reusable launch vehicle. The second concept is a modified pure tanker version of the Argus RLV in which the payload bay is removed and the vehicle propellant tanks are extended to hold additional propellant. An economic analysis was performed for this study that involved the calculation of the design/development and recurring costs of each vehicle. The goal of this analysis was to determine at what flight rate it would be economically beneficial to spend additional development funds to change an existing, sunk cost, payload bay tanker vehicle into a pure tanker design. The results show that for yearly flight rates greater than ~50 flts/yr it is cheaper, on a $/lb basis , to develop and operate a dedicated tanker

    Genotypic and Phenotypic Evaluation of Off-Type Grasses in Hybrid Bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] Putting Greens using Genotyping-by-Sequencing and Morphological Characterization

    No full text
    Many bermudagrass cultivars established for putting greens can be genetically unstable and lead to the occurrence of undesirable off-type grasses that vary in phenotype. The objective of this research was to genetically and phenotypically differentiate off-type grasses and hybrid cultivars
    corecore