15 research outputs found

    A voyage to Mars: A challenge to collaboration between man and machines

    Get PDF
    A speech addressing the design of man machine systems for exploration of space beyond Earth orbit from the human factors perspective is presented. Concerns relative to the design of automated and intelligent systems for the NASA Space Exploration Initiative (SEI) missions are largely based on experiences with integrating humans and comparable systems in aviation. The history, present status, and future prospect, of human factors in machine design are discussed in relation to a manned voyage to Mars. Three different cases for design philosophy are presented. The use of simulation is discussed. Recommendations for required research are given

    What Happened, and Why: Toward an Understanding of Human Error Based on Automated Analyses of Incident Reports

    Get PDF
    The objective of the Aviation System Monitoring and Modeling (ASMM) project of NASA s Aviation Safety and Security Program was to develop technologies that will enable proactive management of safety risk, which entails identifying the precursor events and conditions that foreshadow most accidents. This presents a particular challenge in the aviation system where people are key components and human error is frequently cited as a major contributing factor or cause of incidents and accidents. In the aviation "world", information about what happened can be extracted from quantitative data sources, but the experiential account of the incident reporter is the best available source of information about why an incident happened. This report describes a conceptual model and an approach to automated analyses of textual data sources for the subjective perspective of the reporter of the incident to aid in understanding why an incident occurred. It explores a first-generation process for routinely searching large databases of textual reports of aviation incident or accidents, and reliably analyzing them for causal factors of human behavior (the why of an incident). We have defined a generic structure of information that is postulated to be a sound basis for defining similarities between aviation incidents. Based on this structure, we have introduced the simplifying structure, which we call the Scenario as a pragmatic guide for identifying similarities of what happened based on the objective parameters that define the Context and the Outcome of a Scenario. We believe that it will be possible to design an automated analysis process guided by the structure of the Scenario that will aid aviation-safety experts to understand the systemic issues that are conducive to human error

    Rating the Relevance of QUORUM-Selected ASRS Incident Narratives to a "Controlled Flight into Terrain" Accident

    Get PDF
    An exploratory study was conducted to identify commercial aviation incidents that are relevant to a "controlled flight into terrain" (CFIT) accident using a NASA-developed text processing method. The QUORUM method was used to rate 67820 incident narratives, virtually all of the narratives in the Aviation Safety Reporting System (ASRS) database, according to their relevance to two official reports on the crash of American Airlines Flight 965 near Cali, Colombia in December 1995. For comparison with QUORUM's ratings, three experienced ASRS analysts read the reports of the crash and independently rated the relevance of the 100 narratives that were most highly rated by QUORUM, as well as 100 narratives randomly selected from the database. Eighty-four of 100 QUORUM-selected narratives were rated as relevant to the Cali accident by one or more of the analysts. The relevant incidents involved a variety of factors, including, over-reliance on automation, confusion and changes during descent/approach, terrain avoidance, and operations in foreign airspace. In addition, the QUORUM collection of incidents was found to be significantly more relevant than the random collection

    NASA's Aviation Safety and Modeling Project

    Get PDF
    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data

    A Comprehensive Analysis of the X-15 Flight 3-65 Accident

    Get PDF
    The November 15, 1967, loss of X-15 Flight 3-65-97 (hereafter referred to as Flight 3-65) was a unique incident in that it was the first and only aerospace flight accident involving loss of crew on a vehicle with an adaptive flight control system (AFCS). In addition, Flight 3-65 remains the only incidence of a single-pilot departure from controlled flight of a manned entry vehicle in a hypersonic flight regime. To mitigate risk to emerging aerospace systems, the NASA Engineering and Safety Center (NESC) proposed a comprehensive review of this accident. The goal of the assessment was to resolve lingering questions regarding the failure modes of the aircraft systems (including the AFCS) and thoroughly analyze the interactions among the human agents and autonomous systems that contributed to the loss of the pilot and aircraft. This document contains the outcome of the accident review

    The Human Factors of an Early Space Accident: Flight 3-65 of the X-15

    Get PDF
    The X-15 was a critical research vehicle in the early days of space flight. On November 15, 1967, the X-15-3 suffered an in-flight breakup. This 191st flight of the X-15 and the 65th flight of this third configuration was the only fatal accident of the X-15 program. This paper presents an analysis, from a human factors perspective, of the events that led up to the accident. The analysis is based on the information contained in the report of the Air Force-NASA Accident Investigation Board (AIB) dated January, 1968. The AIBs analysis addressed, primarily, the events that occurred subsequent to the pilots taking direct control of the reaction control system. The analysis described here suggests that all of the events that caused the accident occurred well before the moment when the pilot switched to direct control. Consequently, the analyses and conclusions regarding the causal factors of, and the contributing factors to, the loss of Flight 3-65 presented here differ from those of the AIB based on the same evidence. Although the accident occurred in 1967, the results of the presented analysis are still relevant today. We present our analysis and discuss its implications for the safety of space operations

    Information Display System for Atypical Flight Phase

    Get PDF
    Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase
    corecore