54 research outputs found

    Clusters of Conserved Beta Cell Marker Genes for Assessment of Beta Cell Phenotype

    Get PDF
    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Distinction between interleukin-1-induced necrosis and apoptosis of islet cells

    No full text
    Interleukin (IL)-1 beta is known to cause beta -cell death in isolated rat islets. This effect has been attributed to induction of nitric oxide (NO) synthase in beta -cells and subsequent generation of toxic NO levels; it was not observed, however, in dispersed rat beta -cells. The present study demonstrates that IL-1 beta induces NO-dependent necrosis in rat beta -cells cultured for 3 days at high cell density or in cell aggregates but not as single cells. Its cytotoxic condition is not explained by higher NO production rates but might result from higher intercellular NO concentrations in statically cultured cell preparations with cell-to-cell contacts; nitrite levels in collected culture medium are not a reliable index for these intercellular concentrations. Absence of IL-1-induced necrosis in rat alpha -cells or in human beta -cells is attributed to the cytokine's failure to generate NO in these preparations, not to their reduced sensitivity to NO: the NO donor GEA 3162 (15 min, 50-100 mu mol/l) exerts a comparable necrotic effect in rat and human alpha- or beta -cells. In preparations in which IL-1 beta does mot cause beta -cell necrosis, its combination with gamma -interferon (IFN-gamma) results in NO-independent apoptosis, starting after 3 days and increasing with the duration of exposure. Because IFN-gamma alone was apoptotic far rat alpha -cells, it is proposed that IL-1 beta can make beta -cells susceptible to this effect, conceivably through altering their phenotype. It is concluded that IL-1 beta can cause NO-dependent necrosis or NO-independent apoptosis of islet cells, depending on the species and on the environmental conditions. The experiments in isolated human beta -cell preparations suggest that these cells may preferentially undergo apoptosis when exposed to IL-1 beta plus IFN-gamma unless neighboring non-beta -cells produce toxic NO levels

    Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I

    No full text
    Tumor necrosis factor (TNF) induces a caspase-independent but mitochondria-dependent cell death process in the mouse fibrosarcoma cell line L929. Mitochondria actively participate in this TNF-induced necrotic cell death by the generation of mitochondrial reactive oxygen species (ROS). The aim of this study was to identify the mitochondrial components involved in TNF-induced production of ROS and their regulation by bioenergetic pathways. Therefore, we analyzed the bioenergetic characteristics in two metabolic L929 variants that exhibit different sensitivities to TNF. L929gln cells use glutamine as respiratory substrate and are far more susceptible to TNF-induced ROS generation and cell death as L929glc cells that use glucose as respiratory substrate. We show that the higher levels of reducing NAD(P)H equivalents, detected in the desensitized L929glc cells, do not cause diminished ROS generation. To the contrary, TNF increases the levels of NAD(P)H, probably altering complex I activity. A multiparameter analysis of electron flux through the mitochondrial electron transport chain, TNF-induced ROS levels, and cell death convincingly demonstrates a dependence of TNF signaling on complex I activity. Also, the sensitizing effect of glutamine metabolism correlates with an enhanced contribution of complex I to the overall electron flux. This participation of complex I activity in TNF-induced cell death is regulated by substrate availability rather than by a direct modification of complex I proteins. From the results presented in this paper we conclude that TNF-induced ROS generation and cell death are strongly regulated by bioenergetic pathways that define electron flux through complex I of the electron transport chain

    Glucocorticoids and checkpoint tyrosine kinase inhibitors stimulate rat pancreatic beta cell proliferation differentially.

    No full text
    Cell therapy for diabetes could benefit from the identification of small-molecule compounds that increase the number of functional pancreatic beta cells. Using a newly developed screening assay, we previously identified glucocorticoids as potent stimulators of human and rat beta cell proliferation. We now compare the stimulatory action of these steroid hormones to a selection of checkpoint tyrosine kinase inhibitors that were also found to activate the cell cycle-in beta cells and analyzed their respective effects on DNA-synthesis, beta cell numbers and expression of cell cycle regulators. Our data using glucocorticoids in combination with a receptor antagonist, mifepristone, show that 48h exposure is sufficient to allow beta cells to pass the cell cycle restriction point and to become committed to cell division regardless of sustained glucocorticoid-signaling. To reach the end-point of mitosis another 40h is required. Within 14 days glucocorticoids stimulate up to 75% of the cells to undergo mitosis, which indicates that these steroid hormones act as proliferation competence-inducing factors. In contrast, by correlating thymidine-analogue incorporation to changes in absolute cell numbers, we show that the checkpoint kinase inhibitors, as compared to glucocorticoids, stimulate DNA-synthesis only during a short time-window in a minority of cells, insufficient to give a measurable increase of beta cell numbers. Glucocorticoids, but not the kinase inhibitors, were also found to induce changes in the expression of checkpoint regulators. Our data, using checkpoint kinase-specific inhibitors further point to a role for Chk1 and Cdk1 in G1/S transition and progression of beta cells through the cell cycle upon stimulation with glucocorticoids

    Beta cell count instead of beta cell mass to assess and localize growth in beta cell population following pancreatic duct ligation in mice.

    Get PDF
    BACKGROUND: Pancreatic-tail duct ligation (PDL) in adult rodents has been reported to induce beta cell generation and increase beta cell mass but increases in beta cell number have not been demonstrated. This study examines whether PDL increases beta cell number and whether this is caused by neogenesis of small clusters and/or their growth to larger aggregates. METHODOLOGY: Total beta cell number and its distribution over small (100 µm) clusters was determined in pancreatic tails of 10-week-old mice, 2 weeks after PDL or sham. PRINCIPAL FINDINGS: PDL increased total beta cell mass but not total beta cell number. It induced neogenesis of small beta cell clusters (2.2-fold higher number) which contained a higher percent proliferating beta cells (1.9% Ki67+cells) than sham tails (<0.2%); their higher beta cell number represented <5% of total beta cell number and was associated with a similar increase in alpha cell number. It is unknown whether the regenerative process is causally related to the inflammatory infiltration in PDL-tails. Human pancreases with inflammatory infiltration also exhibited activation of proliferation in small beta cell clusters. CONCLUSIONS/SIGNIFICANCE: The PDL model illustrates the advantage of direct beta cell counts over beta cell mass measurements when assessing and localizing beta cell regeneration in the pancreas. It demonstrates the ability of the adult mouse pancreas for neogenesis of small beta cell clusters with activated beta cell proliferation. Further studies should investigate conditions under which neoformed small beta cell clusters grow to larger aggregates and hence to higher total beta cell numbers

    An analytical comparison of three immunoassay platforms for subpicomolar detection of protein biomarker GAD65.

    No full text
    A disproportional increase of circulating GAD65 within hours from an intraportal islet allotransplantation has been validated as biomarker of beta cell loss and poor functional outcome. More sensitive assays are, however, needed to allow detection of episodes of subtle beta cell loss during late-stage graft rejection or in the peri-onset period of type 1 diabetes. We applied the same sandwich monoclonal antibody couple reactive towards the C- and N-terminus of GAD65 on three advanced immunoassay platforms-the Cytometric Bead Array (CBA, Becton, Dickinson and Company), ElectroChemiLuminescence ImmunoAssay (ECLIA, Meso Scale Discovery) and digital ELISA technology (Single Molecule Array-SIMOA, Quanterix. We then compared analytical performance (linearity, imprecision, limit of detection and functional sensitivity), correlation of results, and practicality. All evaluated techniques showed linearity up to at least 500 ng/dL (76.9 pmol/L). SIMOA achieved the lowest imprecision. The 3 platforms correlate well with each other and could all detect subpicomolar concentrations of GAD65 in plasma, but only SIMOA and CBA could quantify down to that range. SIMOA can achieve the highest sample throughput. The three methods tested allow sensitive detection of GAD65, but SIMOA appears best suited for automated quantification of subpicomolar concentrations

    Specificity in beta cell expression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potential role in down-regulating insulin release

    No full text
    A loss-of-function mutation of the mitochondrial β-oxidation enzyme L-3-hydroxyacyl-CoA dehydrogenase, short chain (HADHSC), has been associated with hyperinsulinemic hypoglycemia in man. It is still unclear whether loss of glucose homeostasis in these patients (partly) results from a dysregulation of beta cells. This study examines HADHSC expression in purified rat beta cells and investigates whether its selective suppression elevates insulin release. Beta cells expressed the highest levels of HADHSC mRNA and protein of all examined tissues, including those with high rates of mitochondrial β-oxidation. On the other hand, beta cells expressed relatively low levels of other β-oxidation enzymes (acyl-CoA dehydrogenase short, medium, and long chain and acetyl-coenzyme A acyltransferase 2). HADHSC expression was sequence-specifically silenced by RNA interference, and the effects were examined on glucose-stimulated insulin secretion following 48-72 h of suppression. In both rat beta cells and in the beta cell line INS1 832-13, HADHSC silencing resulted in elevated insulin release at low and at high glucose concentrations, which appeared not to be caused by increased rates of glucose metabolism or an inhibition in fatty acid oxidation. These data indicate that the normal beta cell phenotype is characterized by a high expression of HADHSC and a low expression of other β-oxidation enzymes. Down-regulation of HADHSC causes an elevated secretory activity suggesting that this enzyme protects against inappropriately high insulin levels and hypoglycemia. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Glucose Regulates Rat Beta Cell Number through Age-Dependent Effects on Beta Cell Survival and Proliferation

    No full text
    <div><p>Background</p><p>Glucose effects on beta cell survival and DNA-synthesis suggest a role as regulator of beta cell mass but data on beta cell numbers are lacking. We examined outcome of these influences on the number of beta cells isolated at different growth stages in their population.</p><p>Methods</p><p>Beta cells from neonatal, young-adult and old rats were cultured serum-free for 15 days. Their number was counted by automated whole-well imaging distinguishing influences on cell survival and on proliferative activity.</p><p>Results</p><p>Elevated glucose (10–20 versus 5 mmol/l) increased the number of living beta cells from 8-week rats to 30%, following a time- and concentration-dependent recruitment of quiescent cells into DNA-synthesis; a glucokinase-activator lowered the threshold but did not raise total numbers of glucose-recruitable cells. No glucose-induced increase occurred in beta cells from 40-week rats. Neonatal beta cells doubled in number at 5 mmol/l involving a larger activated fraction that did not increase at higher concentrations; however, their higher susceptibility to glucose toxicity at 20 mmol/l resulted in 20% lower living cell numbers than at start. None of the age groups exhibited a repetitively proliferating subpopulation.</p><p>Conclusions</p><p>Chronically elevated glucose levels increased the number of beta cells from young-adult but not from old rats; they interfered with expansion of neonatal beta cells and reduced their number. These effects are attributed to age-dependent differences in basal and glucose-induced proliferative activity and in cellular susceptibility to glucose toxicity. They also reflect age-dependent variations in the functional heterogeneity of the rat beta cell population.</p></div
    • …
    corecore