61 research outputs found

    Polyethyleneimine-mediated transfection of cultured postmitotic neurons from rat sympathetic ganglia and adult human retina

    Get PDF
    BACKGROUND: Chemical methods of transfection that have proven successful with cell lines often do not work with primary cultures of neurons. Recent data, however, suggest that linear polymers of the cation polyethyleneimine (PEI) can facilitate the uptake of nucleic acids by neurons. Consequently, we examined the ability of a commercial PEI preparation to allow the introduction of foreign genes into postmitotic mammalian neurons. Sympathetic neurons were obtained from perinatal rat pups and maintained for 5 days in vitro in the absence of nonneuronal cells. Cultures were then transfected with varying amounts of a plasmid encoding either E. coli β-galactosidase or enhanced green fluorescence protein (EGFP) using PEI. RESULTS: Optimal transfection efficiency was observed with 1 μg/ml of plasmid DNA and 5 μg/ml PEI. Expression of β-galactosidase was both rapid and stable, beginning within 6 hours and lasting for at least 21 days. A maximum yield was obtained within 72 hours with ∼ 9% of the neurons expressing β-galactosidase, as assessed by both histochemistry and antibody staining. Cotransfection of two plasmids encoding reporter genes was achieved. Postmitotic neurons from adult human retinal cultures also demonstrated an ability to take up and express foreign DNA using PEI as a vector. CONCLUSIONS: These data suggest that PEI is a useful agent for the stable expression of plasmid-encoded genes in neuronal cultures

    Assessment of viral and non-viral gene transfer into adult rat brains using HSV-1, calcium phosphate and PEI-based methods

    Get PDF
    CNS gene transfer could provide new approaches to the modelling of neurodegenerative diseases and devising potential therapies. One such disorder is Parkinson’s disease (PD), in which dysfunction of several different metabolic processes has been implicated. Here we review the literature on gene transfer systems based on herpes simplex virus type 1 (HSV-1) and non-viral polyethyleneimine (PEI) and calcium phosphate nanoparticle methods. We also assess the usefulness of various CNS gene delivery methods and present some of our own data to exemplify such usefulness. Our data result from vectors stereotaxically introduced to the substantia nigra (SN) of adult rats and evaluated 1 week and/or 1 month post injection using histochemical methods to assess recombinant ß-galactosidase enzyme activity. Gene transfer using PEI or calcium phosphate-mediated transfections was observed for both methods and PEI was comparable to that of HSV-1 amplicon. Our data show that the amplicon delivery was markedly increased when packaged with a helper virus and was similar to the expression profile achieved with a full-size replication-defective HSV-1 recombinant (8117/43). We also examine whether PEI or HSV-1 amplicon-mediated gene transfer could facilitate assessment of the biological effects induced by a dominant negative FGF receptor-1 mutant to model the reduced FGF signalling thought to occur in Parkinson’s disease

    Basic Fibroblast Growth Factor (Bfgf) Regulates Tyrosine Hydroxylase And Proenkephalin Mrna Levels In Adrenal Chromaffin Cells

    No full text
    bFGF is a neurotrophic protein expressed in various regions of the adult peripheral and central nervous system. The present study was undertaken to examine the role of bFGF in multihormonal, catecholaminergic and enkephalinergic cells of the adrenal medulla (AM). Western blot analysis revealed the presence of at least three bFGF isoforms (18, 22/23, and 24 kDa) in cultured bovine AM cells. Incubation of AM cells with the exogenous 18 kDa bFGF produced time-dependent increases in tyrosine hydroxylase (TH) and proenkephalin (PEK) mRNA, with maximal changes occurring at 12 h (TH) or 24 h (PEK) of bFGF exposure. Effects of bFGF on TH and PEK mRNA were non-additive with increases induced by exposure of AM cells to nicotine, the depolarizing agent veratridine, or the adenylate cyclase activator forskolin. These data indicate that bFGF effects may occur through intracellular pathways accessed during transsynaptic induction of TH and PEK genes. The increases in PEK mRNA induced by nicotine or bFGF were inhibited by the calcium antagonist TMB-8 also inhibited bFGF-induced increases in TH mRNA as well. However, treatment with TMB-8 increased basal levels of TH mRNA. The addition of bFGF increased endogenous levels of c-fos mRNA, c-Fos and c-Fos-related proteins, suggesting that bFGF may active TH and PEK gene expression through a calcium-AP1 transcriptional regulatory pathway. Immunohistochemical analysis revealed the presence of bFGF-immunoreactivity (bFGF-IR) in the cytoplasm and in the nucleus of AM cells. Incubation of cells with exogenous bFGF produced time-dependent increases of nuclear bFGF-IR. The intensity of nuclear bFGF-IR was also enhanced in cells treated with veratridine, indicating that in both cases nuclear translocation of bFGF occurs. The present study indicates that bFGF could serve as a paracrine or autocrine factor regulating the expression of TH and PEK genes in AM cells. It also suggests that nuclear translocation of bFGF in AM cells may play a role in transcriptional effects of bFGF in those cells. © 1993

    Global Genome Conformational Programming during Neuronal Development Is Associated with CTCF and Nuclear FGFR1—The Genome Archipelago Model

    No full text
    During the development of mouse embryonic stem cells (ESC) to neuronal committed cells (NCC), coordinated changes in the expression of 2851 genes take place, mediated by the nuclear form of FGFR1. In this paper, widespread differences are demonstrated in the ESC and NCC inter- and intra-chromosomal interactions, chromatin looping, the formation of CTCF- and nFGFR1-linked Topologically Associating Domains (TADs) on a genome-wide scale and in exemplary HoxA-D loci. The analysis centered on HoxA cluster shows that blocking FGFR1 disrupts the loop formation. FGFR1 binding and genome locales are predictive of the genome interactions; likewise, chromatin interactions along with nFGFR1 binding are predictive of the genome function and correlate with genome regulatory attributes and gene expression. This study advances a topologically integrated genome archipelago model that undergoes structural transformations through the formation of nFGFR1-associated TADs. The makeover of the TAD islands serves to recruit distinct ontogenic programs during the development of the ESC to NCC

    Analysis of Light Propagation on Physiological Properties of Neurons for Nanoscale Optogenetics

    Get PDF
    Miniaturization of implantable devices is an important challenge for future brain-computer interface applications, and in particular for achieving precise neuron stimulation. For stimulation that utilizes light, i.e., optogenetics, the light propagation behavior and interaction at the nanoscale with elements within the neuron is an important factor that needs to be considered when designing the device. This paper analyzes the effect of light behavior for a single neuron stimulation and focuses on the impact from different cell shapes. Based on the Mie scattering theory, the paper analyzes how the shape of the soma and the nucleus contributes to the focusing effect resulting in an intensity increase, which ensures that neurons can assist in transferring light through the tissue toward the target cells. At the same time, this intensity increase can in turn also stimulate neighboring cells leading to interference within the neural circuits. This paper also analyzes the ideal placements of the device with respect to the angle and position within the cortex that can enable axonal biophoton communications, which can contain light within the cell to avoid the interference.acceptedVersionPeer reviewe

    Cooperation of nuclear fibroblast growth factor receptor 1 and Nurr1 offers new interactive mechanism in postmitotic development of mesencephalic dopaminergic neurons

    No full text
    Experiments in mice deficient for Nurr1 or expressing the dominant-negative FGF receptor (FGFR) identified orphan nuclear receptor Nurr1 and FGFR1 as essential factors in development of mesencephalic dopaminergic (mDA) neurons. FGFR1 affects brain cell development by two distinct mechanisms. Activation of cell surface FGFR1 by secreted FGFs stimulates proliferation of neural progenitor cells, whereas direct integrative nuclear FGFR1 signaling (INFS) is associated with an exit from the cell cycle and neuronal differentiation. Both Nurr1 and INFS activate expression of neuronal genes, such as tyrosine hydroxylase (TH), which is the rate-limiting enzyme in dopamine synthesis. Here, we show that nuclear FGFR1 and Nurr1 are expressed in the nuclei of developing TH-positive cells in the embryonic ventral midbrain. Both nuclear receptors were effectively co-immunoprecipitated from the ventral midbrain of FGF-2-deficient embryonic mice, which previously showed an increase of mDA neurons and enhanced nuclear FGFR1 accumulation. Immunoprecipitation and co-localization experiments showed the presence of Nurr1 and FGFR1 in common nuclear protein complexes. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrated the Nurr1-mediated shift of nuclear FGFR1-EGFP mobility toward a transcriptionally active population and that both Nurr1 and FGFR1 bind to a common region in the TH gene promoter. Furthermore, nuclear FGFR1 or its 23-kDa FGF-2 ligand (FGF-2(23)) enhances Nurr1-dependent activation of the TH gene promoter. Transcriptional cooperation of FGFR1 with Nurr1 was confirmed on isolated Nurr1-binding elements. The proposed INFS/Nurr1 nuclear partnership provides a novel mechanism for TH gene regulation in mDA neurons and a potential therapeutic target in neurodevelopmental and neurodegenerative disorders
    • …
    corecore