66 research outputs found

    Quinpramine Ameliorates Rat Experimental Autoimmune Neuritis and Redistributes MHC Class II Molecules

    Get PDF
    Activation of inflammatory cells is central to the pathogenesis of autoimmune demyelinating diseases of the peripheral nervous system. The novel chimeric compound quinpramine—generated from imipramine and quinacrine—redistributes cholesterol rich membrane domains to intracellular compartments. We studied the immunological and clinical effects of quinpramine in myelin homogenate induced Lewis rat experimental autoimmune neuritis (EAN), a model system for acute human inflammatory neuropathies, such as the Guillain-Barré syndrome. EAN animals develop paresis of all limbs due to autoimmune inflammation of peripheral nerves. Quinpramine treatment ameliorated clinical disease severity of EAN and infiltration of macrophages into peripheral nerves. It reduced expression of MHC class II molecules on antigen presenting cells and antigen specific T cell proliferation both in vitro and in vivo. Quinpramine exerted its anti-proliferatory effect on antigen presenting cells, but not on responder T cells. Our data suggest that quinpramine represents a candidate pharmaceutical for inflammatory neuropathies

    PEG Minocycline-Liposomes Ameliorate CNS Autoimmune Disease

    Get PDF
    Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS). Minocycline, a potent inhibitor of matrix metalloproteinase (MMP)-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG) minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs), we determined that PEG minocycline-liposome preparations stabilized with CaCl(2) are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets

    No full text
    Increasing recognition of the role of B cells in the adaptive immune response makes B cells an important therapeutic target in autoimmunity. Numerous current and developmental immunotherapies target B cells for elimination through recognition of cell-surface proteins expressed specifically on B cells, in particular CD19 and CD20. Similarities and differences in the function and expression of these two molecules predict some shared, and some distinct, pharmacological effects of agents targeting CD19 versus CD20, potentially leading to differences in the clinical safety and efficacy of such agents. Here, we review current knowledge of CD19 and CD20 function and biology, survey current and developmental therapies that target these molecules, and discuss potential differences in elimination of B cells by drugs that target CD19 versus CD20, with particular focus on the central nervous system autoimmune diseases multiple sclerosis and neuromyelitis optica. The principles and mechanisms herein discussed might also be relevant to a variety of other nervous system autoimmune disorders, including NMDA (N-methyl-D-aspartate) receptor encephalitis, transverse myelitis and myasthenia gravis

    A genetic variant of the anti-apoptotic protein Akt predicts natalizumab-induced lymphocytosis and post-natalizumab multiple sclerosis reactivation

    No full text
    Background: Multiple sclerosis (MS) patients discontinuing natalizumab treatment are at risk of disease reactivation. No clinical or surrogate parameters exist to identify patients at risk of post-natalizumab MS reactivation.Objective: To determine the role of natalizumab-induced lymphocytosis and of Akt polymorphisms in disease reactivation after natalizumab discontinuation.Methods: Peripheral leukocyte count and composition were monitored in 93 MS patients during natalizumab treatment, and in 56 of these subjects who discontinued the treatment. Genetic variants of the anti-apoptotic protein Akt were determined in all subjects because natalizumab modulates the apoptotic pathway and lymphocyte survival is regulated by the apoptotic cascade.Results: Natalizumab-induced peripheral lymphocytosis protected from post-natalizumab MS reactivation. Subjects who relapsed or had magnetic resonance imaging (MRI) worsening after treatment cessation, in fact, had milder peripheral lymphocyte increases during the treatment, largely caused by less marked T cell increase. Furthermore, subjects carrying a variant of the gene coding for Akt associated with reduced anti-apoptotic efficiency (rs2498804T) had lower lymphocytosis and higher risk of disease reactivation.Conclusion: This study identified one functionally meaningful genetic variant within the Akt signaling pathway that is associated with both lymphocyte count and composition alterations during natalizumab treatment, and with the risk of disease reactivation after natalizumab discontinuation
    corecore