2,858 research outputs found

    Engineering Quantum Jump Superoperators for Single Photon Detectors

    Full text link
    We study the back-action of a single photon detector on the electromagnetic field upon a photodetection by considering a microscopic model in which the detector is constituted of a sensor and an amplification mechanism. Using the quantum trajectories approach we determine the Quantum Jump Superoperator (QJS) that describes the action of the detector on the field state immediately after the photocount. The resulting QJS consists of two parts: the bright counts term, representing the real photoabsorptions, and the dark counts term, representing the amplification of intrinsic excitations inside the detector. First we compare our results for the counting rates to experimental data, showing a good agreement. Then we point out that by modifying the field frequency one can engineer the form of QJS, obtaining the QJS's proposed previously in an ad hoc manner

    Microscopic models of quantum jump super-operators

    Full text link
    We discuss the quantum jump operation in an open system, and show that jump super-operators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with 2-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that derived quantum jump super-operators have `nonlinear' form which depends on assumptions made about the interaction between the system and the detector. A continuous transition to the standard Srinivas--Davies form of the quantum jump super-operatoris shown

    Molecular communication in fluid media: The additive inverse Gaussian noise channel

    Full text link
    We consider molecular communication, with information conveyed in the time of release of molecules. The main contribution of this paper is the development of a theoretical foundation for such a communication system. Specifically, we develop the additive inverse Gaussian (IG) noise channel model: a channel in which the information is corrupted by noise with an inverse Gaussian distribution. We show that such a channel model is appropriate for molecular communication in fluid media - when propagation between transmitter and receiver is governed by Brownian motion and when there is positive drift from transmitter to receiver. Taking advantage of the available literature on the IG distribution, upper and lower bounds on channel capacity are developed, and a maximum likelihood receiver is derived. Theory and simulation results are presented which show that such a channel does not have a single quality measure analogous to signal-to-noise ratio in the AWGN channel. It is also shown that the use of multiple molecules leads to reduced error rate in a manner akin to diversity order in wireless communications. Finally, we discuss some open problems in molecular communications that arise from the IG system model.Comment: 28 pages, 8 figures. Submitted to IEEE Transactions on Information Theory. Corrects minor typos in the first versio

    Smooth quantum-classical transition in photon subtraction and addition processes

    Full text link
    Recently Parigi et al. [Science 317, 1890 (2007)] implemented experimentally the photon subtraction and addition processes from/to a light field in a conditional way, when the required operations were produced successfully only upon the positive outcome of a separate measurement. It was verified that for a low intensity beam (quantum regime) the bosonic annihilation operator does indeed describe a single photon subtraction, while the creation operator describes a photon addition. Nonetheless, the exact formal expressions for these operations do not always reduce to these simple identifications, and in this connection here we deduce the general superoperators for multiple photons subtraction and addition processes and analyze the statistics of the resulting states for classical field states having an arbitrary intensity. We obtain closed analytical expressions and verify that for classical fields with high intensity (classical regime) the operators that describe photon subtraction and addition processes deviate significantly from simply annihilation and creation operators. Complementarily, we analyze in details such a smooth quantum-classical transition as function of beam intensity for both processes.Comment: 7 pages, 5 figures. To appear in Phys. Rev.

    Unleashing the Power of VGG16: Advancements in Facial Emotion Recognization

    Get PDF
    In facial emotion detection, researchers are actively exploring effective methods to identify and understand facial expressions. This study introduces a novel mechanism for emotion identification using diverse facial photos captured under varying lighting conditions. A meticulously pre-processed dataset ensures data consistency and quality. Leveraging deep learning architectures, the study utilizes feature extraction techniques to capture subtle emotive cues and build an emotion classification model using convolutional neural networks (CNNs). The proposed methodology achieves an impressive 97% accuracy on the validation set, outperforming previous methods in terms of accuracy and robustness. Challenges such as lighting variations, head posture, and occlusions are acknowledged, and multimodal approaches incorporating additional modalities like auditory or physiological data are suggested for further improvement. The outcomes of this research have wide-ranging implications for affective computing, human-computer interaction, and mental health diagnosis, advancing the field of facial emotion identification and paving the way for sophisticated technology capable of understanding and responding to human emotions across diverse domains

    Development of a creep data base management system for engineering materials

    Get PDF
    A fully menu driven creep data base management system has been developed for various high temperature materials using the client /server (C/S) architecture with Sybase system. 10 as backend and power builder 4.0 as an inter-face. The relational data base constitutes of various classes of materials, their heat treatment, prior history and the related creep properties at different test condit-ions, in addition to the source process route and chemical composition details.Top-down approach has been adopted in designing the entity-relationship (E-R) model. The creep data is organized into the third normal form, and the entire system is divided into manageable modules. Coding for the system is done using Transact-SQL for data defin- ition, manipulation and control operations, and power script language for application development. This article briefly outlines the formulation of data base design, and the implemented E-R model, in addition , to the prese-ntation of various screen formats used for data entry and retrieval modules

    Estimation of Measures in M/m/1 Queue

    Get PDF
    Maximum likelihood and uniform minimum variance unbiased estimators of steady-state probability distribution of system size, probability of at least â„“ customers in the system in steady state, and certain steady-state measures of effectiveness in the M/M/1 queue are obtained/derived based on observations on X, the number of customer arrivals during a service time. The estimators are compared using Asympotic Expected Deficiency (AED) criterion leading to recommendation of uniform minimum variance unbiased estimators over maximum likelihood estimators for some measures

    A Routing Delay Predication Based on Packet Loss and Explicit Delay Acknowledgement for Congestion Control in MANET

    Get PDF
    In Mobile Ad hoc Networks congestion control and prevention are demanding because of network node mobility and dynamic topology. Congestion occurs primarily due to the large traffic volume in the case of data flow because the rate of inflow of data traffic is higher than the rate of data packets on the node. This alteration in sending rate results in routing delays and low throughput. The Rate control is a significant concern in streaming applications, especially in wireless networks. The TCP friendly rate control method is extensively recognized as a rate control mechanism for wired networks, which is effective in minimizing packet loss (PL) in the event of congestion. In this paper, we propose a routing delay prediction based on PL and Explicit Delay Acknowledgement (EDA) mechanism for data rate and congestion control in MANET to control data rate to minimize the loss of packets and improve the throughput. The experiment is performed over a reactive routing protocol to reduce the packet loss, jitter, and improvisation of throughput

    Load Flow Solution of Distribution Systems - A Bibliometric Survey

    Get PDF
    In this paper, Bibliometric Survey has been carried out on ‘Load Flow Solution of Distribution Systems’ from 2012 to 2021. Scopus database has been used for the analysis. There were total 1711 documents found on this topic. The statistical analysis is carried out source wise, year wise, area wise, Country wise, University wise, author wise, and based on funding agency. Network analysis is also carried out based on Co-authorship, Co-occurrence. Results are presented. During 2020 and 2018, there were 263 documents published which is the highest. ‘IEEE Transactions on Power Systems’ has published 90 documents during the period of study which is the highest in terms of articles under the category of sources. Highest citations were received by the article authored by Hung and Mithulanathan with 484 citations in the collected database with the chosen key words. VOSviewer 1.6.16 is the software that is used for the statistical analysis and network analysis on the database. It provides a very effective way to analyze the co-authorship, co-occurrences, citation and bibliometric analysis etc. The Source for all Tables and figures is www.scopus.com, The data is assessed on 6th July, 2021

    Continuous photodetection model: quantum jump engineering and hints for experimental verification

    Get PDF
    We examine some aspects of the continuous photodetection model for photocounting processes in cavities. First, we work out a microscopic model that describes the field-detector interaction and deduce a general expression for the Quantum Jump Superoperator (QJS), that shapes the detector's post-action on the field upon a detection. We show that in particular cases our model recovers the QJSs previously proposed ad hoc in the literature and point out that by adjusting the detector parameters one can engineer QJSs. Then we set up schemes for experimental verification of the model. By taking into account the ubiquitous non-idealities, we show that by measuring the lower photocounts moments and the mean waiting time one can check which QJS better describes the photocounting phenomenon.Comment: 12 pages, 7 figures. Contribution to the conference Quantum Optics III, Pucon - Chile, November 27-30, 200
    • …
    corecore