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Estimation ofMeasures inM/M/1 Queue

V. SRINIVAS1, S. SUBBA RAO2, AND B. K. KALE3

1Department of Statistics, Bangalore University, Bangalore, India
2Department of Management, The University of Toledo, Ohio, USA
3Department of Statistics, University of Pune, Pune, India

Maximum likelihood and uniform minimum variance unbiased estimators of steady-
state probability distribution of system size, probability of at least � customers in
the system in steady state, and certain steady-state measures of effectiveness in
the M/M/1 queue are obtained/derived based on observations on X, the number
of customer arrivals during a service time. The estimators are compared using
Asympotic Expected Deficiency (AED) criterion leading to recommendation of
uniform minimum variance unbiased estimators over maximum likelihood estimators
for some measures.

Keywords Asymptotic expected deficiency; Maximum likelihood estimator;
Nonlinear program; Queues; Uniform minimum variance unbiased estimator.

1. Introduction

Queueing theory has attracted researchers from various disciplines, due to many
interesting probabilistic, operational, and statistical problems that naturally arise in
the study of queueing systems. A problem that gains importance due to practical
application of queues is that of statistical inference for queueing parameters and
related parametric functions. A state-of-the-art review of this and associated areas
is due to Bhat et al. (1997). The literature on statistical inference in the post
review period includes Conti (1998), Armero and Conesa (1998), Armero and
Bayarri (1999), Sharma and Kumar (1999), Zheng and Seila (2000), Armero and
Conesa (2000), Butler and Huzurbazaar (2000), Huang and Brill (2001), Ausin et al.
(2005), Ramirez et al. (2008a,b), Choudhury and Borthakur (2008), and Kiessler and
Lund (2009). However, the problem of Maximum Likelihood (ML) and Uniform
Minimum Variance Unbiased (UMVU) estimation of traffic intensity, system size
probabilities and measures of effectiveness in steady state, based on a random
sample of fixed size n on number of customer arrivals during the service time of
a customer, in M/M/1 queue has not been considered. A necessary and sufficient
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condition for a M/M/1 queue to be in steady state is that the traffic intensity,
denoted by �, must be restricted to the interval �0� 1�. This article uses this fact to
solve the problem with the objective of classical Maximum Likelihood and Uniform
Minimum Variance Unbiased estimation of: (i) traffic intensity in steady state; (ii)
Steady state probabilities of system size; and (iii) measures of effectiveness in steady
state, in the M/M/1 queue.

The outline of this article is as follows. The problem of ML estimation (MLE)
of the traffic intensity in the steady state is solved as a constrained optimization
problem in Sec. 2. In Sec. 3, ML estimators of the steady state measures mentioned
in (ii) and (iii) above are obtained. Furthermore, best unbiased estimators of all
the above-mentioned measures are obtained by the application of Lehmann–Scheffe
theorem in Sec. 4. In particular, UMVU estimator of steady state probability
of system size greater than l is derived in Sec. 4.1 and this is used to obtain
UMVU estimators of steady state system size probabilities in Sec. 4.2. Also, UMVU
estimators of steady state measures of effectiveness are derived in Sec. 4.3. A
comparison of ML and UMVU estimators of various measures is discussed in
Sec. 5 leading to a recommendation to the queueing analyst on choice of one of the
classical estimators. Since we are interested in only steady-state measures we will
suppress the usage of “steady state” in the sequel.

2. Constrained Optimization for MLE of Traffic Intensity

In the imbedded Markov chain analysis of the M/G/1 queue, X1� X2� � � � � Xn� � � �
are i.i.d. random variables, where Xn denotes the number of customer arrivals during
the service time of n-th customer. For the M/Er/1 queue, the probability mass
function (pmf) of X is given by

p�x� �� r� =
(
x + r − 1

x

)(
�

�+ r

)x (
r

�+ r

)r

� x = 0� 1� 2� � � � � (2.1)

the negative binomial distribution with parameters r and �. Notice that when r = 1,
X is a geometric random variable with the following geometric pmf for X in M/M/1
queue:

p�x� �� =
(

�

�+ 1

)x ( 1
�+ 1

)
� x = 0� 1� 2� � � � � (2.2)

The pmf in (2.1) and its reparametrized versions have received importance in the
biological sciences due to its many applications as evidenced in Saha and Paul (2005)
and related articles. In the queueing context, Harishchandra and Subba Rao (1988)
studied statistical inference aspects related to � in the M/Ek/1 queue based on a
random sample on X with pmf (2.1). They showed that the ML estimator of �� �̂,
in the M/Ek/1 queue, assuming k to be known, is the sample mean estimator and
thus is the ML estimator of � in the M/M/1 queue as well. However, they did not
derive the ML estimator of the traffic intensity in the M/M/1 queue under steady
state conditions. This is required to obtain ML estimators of measures in the next
section and thus ML estimator of � is derived by solving a constrained optimization
problem. This is based on a random sample x = �x1� x2� � � � � xn� on x with pmf (2.2)
and this is true of all estimation procedures in this article.
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The problem of ML estimation of � in the M�M�1 queue in steady state is
the problem of maximizing the likelihood function (or equivalently log-likelihood
function), subject to the constraint that 0 ≤ � < 1, with respect to �. This
optimization problem is:

max
�

L��� x̃� = t log �− �n+ t� log�1+ ��

s.t � ≤ 1−

� ≥ 0�

where 1− is a value of � close to 1 but less than one and is based on known outside

information about the queueing system and t = n∑
i=1

xi. Clearly, it is a Nonlinear

Program (NLP) in a single variable �. Also,

	L

	�
= t

�
− n+ t

1+ �
and

	2L

	�2
= − t

�2
+ n+ t

�1+ ��2
< 0 ∀��

Thus, L��� x� is a strictly concave function of �. As the left-hand side of linear
constraint is such that 	2�

	�2
= 0 this function is both convex and concave. Hence the

optimal solution �̂∗ to this NLP is provided by the following Kuhn–Tucker (see
Hillier and Lieberman, 1974) conditions:

1�
t

�̂∗ − n+ t

1+ �̂∗ − u ≤ 0 2� �̂∗
[
t

�̂∗ − n+ t

1+ �̂∗ − u

]
= 0

3� �̂∗ − 1− ≤ 0 4� u��̂∗ − 1−
 = 0

5� u ≥ 0 6� �̂∗ ≥ 0

Here, u is a real number. The optimal solution is given by

�̂∗ =
{
xn� xn < 1−

1−� xn ≥ 1−
� (2.3)

That is the MLE of � is the classical sample mean estimate if its value is less than or
equal to 1−, otherwise, meaning that the value is greater than 1−, the ML estimate
is 1−. We shall use �̂ for �̂∗ in the next section for notational convenience.

3. ML Estimation of Measures

The ML estimator of the steady state probability distribution and certain measures
of effectiveness in the M/M/1 queue can be obtained using the fact that �̂ is given
by (2.3) in such a queue and by the application of the invariance property of ML
estimators (see Kale, 1999).

The steady-state probability distribution of system size in M/M/1 queue is
given by

pk = �1− ���k� k = 0� 1� 2� � � � (3.1)
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and its ML estimator, p̂k, is obtained by plugging in the ML estimator of � for �.
Thus,

p̂k = �1− �̂���̂�k� k = 0� 1� 2� � � � � (3.2)

The steady-state measures of effectiveness in M/M/1 queue, namely: (i) expected
number in the non empty system �L′

q�; (ii) expected number in the system �L�; (iii)
expected number in the queue �Lq� are, following Gross and Harris (1985), given by

L′
q� L� Lq =

��

1− �
� � = 0� 1� 2 (3.3)

and their ML estimators are obtained by substituting �̂ for � in (3.3), which is the
application of invariance property of ML estimators.

4. Best Unbiased Estimation

We first obtain the UMVU estimator of �l�l > 0� in the M/M/1 queue, which is the
steady-state probability of having l or more customers in the system, to facilitate
UMVU estimation of steady state probability distribution of system size in Sec. 4.2.
In Sec. 4.3, UMVU estimators of certain measures of effectiveness in the M/M/1
queue are derived. For UMVU estimation we work with a reparametrized geometric
distribution.

4.1. Estimation of �l

The UMVU estimator of �l, l ∈ �1� 2� � � � , denoted by Tl, is derived using
Lehmann–Scheffe theorem. For this, we reparametrize the geometric pmf in (2.2)
with � = �

1+�
implying � = �

1−�
. This leads from the parameter space � = �� � 0 <

� < 1 to � = �� � 0 < � < 1
2. The geometric pmf is

p�x� �� = �1− ���x� x = 0� 1� 2� � � � � (4.1)

which belongs to the power series family of distributions and hence to Koopman-
Darmois family. The complete sufficient statistic for this family is T =∑n

i=1 Xi. The
UMVU estimator of �l is, by the application of Lehmann–Scheffe theorem, any
function ��T� that is an unbiased estimator of �l. Mathematically,

E���T�
 = �l

which, in terms of �, is

E���T�
 =
(

�

1− �

)l

and is equivalent to

�∑
t=0

��t�

(
t + n− 1

t

)
�t = �l + �n+ l��l+1 + �n+ l��n+ l+ 1�

�l+2

2! + · · · �
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where we have used the constraint on � and thus of �. The power series on left-hand
side of above equation and right-hand side of above equation are equal if the
coefficients of �t, t = 0� 1� 2� � � � are equal. This implies

��t�

(
t + n− 1

t

)
=


0� t < l

1� t = l

�n+ t − 1�!
�n+ l− 1�!�t − l�! � t > l

which leads to

Tl = ��t� =



0� t < l(
t + n− 1

t

)−1

� t = l

t! �n− 1�!
�n+ l− 1�! �t − l�! � t > l�

(4.2)

the UMVU estimator of �l. Clearly, the UMVU estimator of � is obtained when
l = 1 and is the sample mean estimator, as it should be, for � is the mean of the
pmf in (2.2).

4.2. Estimation of System Size Distribution

The UMVU estimator of the steady-state probability distribution of system size in
the M/M/1 queue is obtained by a direct application of the well known theorem
(see Patel et al., 1976) which states that if T1� T2� � � � � Tk are UMVU estimators
of g1���� g2���� � � � � gk���, respectively, then

∑k
i=1 ciTi is the UMVU estimator of∑k

i=1 cigi��� for any constants ci� i = 1� 2� � � � � k. Thus, the UMVU estimator of
pk� p̃k, is given by

p̃k = Tk − Tk+1�

where pk is given by (3.1) and T� is UMVU estimator of �� given in (4.2).

4.3. Estimation of Measures of Effectiveness

We now derive the UMVU estimators of measures of effectiveness given by (3.3).
For this we again work with the reparametrized geometric distribution in (4.1)
with constrained parameter space � = {

� � 0 < � < 1
2

}
. Recalling that

∑n
i=1 Xi is a

complete sufficient statistic, the UMVU estimator of L′
q is derived by an application

of the Lehmann–Scheffe theorem. The measure L′
q in (3.3) in terms of � is 1−�

1−2� ,
0 < � < 1

2 . Thus, by Lehmann–Scheffe theorem, ��T� is UMVU estimator of L′
q if

E����T� =
1− �

1− 2�
� 0 < � <

1
2
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which is equivalent to

�∑
t=0

��t�

(
n+ t − 1

t

)
�t�1− ��n = 1− �

1− 2�
� 0 < � <

1
2

and this can be rewritten as
�∑
t=0

{
��t�

(
n+ t − 1

t

)}
�t = 1− �

1− 2�
�

1
�1− ��n

� (4.3)

Expanding the right-hand side of (4.3) and collecting the coefficients of �j� j =
0� 1� 2� � � � on right-hand side of (4.3) gives

coefficient of �t =
t∑

r=0

2t−r

(
n+ r − 2

r

)
�

where r is just a running subscript and not the parameter. Thus (4.3) is
�∑
t=0

{(
n+ t − 1

t

)
��t�

}
�t =

�∑
t=0

{
t∑

r=0

(
n+ r − 2

r

)
2t−r

}
�t�

The power series on left-hand side and right-hand side are equal if coefficient of �t

for every value of t are equal. Hence,

��t� =
t∑

r=0

(
n+r−2

r

)
2t−r(

n+t−1
t

) � n ≥ 2

is the UMVU estimator of L′
q.

We now turn to UMVU estimation of L, which in terms of parameter � is
��1− 2��−1� 0 < � < 1

2 � By Lehmann–Scheffé theorem, �1�T� is UMVU estimator of
L if

E ��1�T� = ��1− 2��−1� 0 < � <
1
2

That is,
�∑
t=0

{
�1�t�

(
n+ t − 1

t

)}
�t = ��1− 2��−1�1− ��−n

and thus
�∑
t=0

{
�1�t�

(
n+ t − 1

t

)}
�t =

�∑
t=1

t∑
r=1

2t−r

(
n+ r − 2
r − 1

)
�t�

Equating the coefficients of �t� t = 0� 1� 2� � � � on both sides we get

�1�t� =


0� t = 0
n∑

r=1
2t−r

(
n+r−2
r−1

)
(
n+t−1

t

) � t = 1� 2� � � � �

the UMVU estimator of L.
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The UMVU estimator of Lq = �2�1− ��−1�1− 2��−1 is �2�T� if it satisfies

E���2�T� = �2�1− ��−1�1− 2��� 0 < � <
1
2
�

which is equivalent to
�∑
t=0

{
�2�t�

(
n+ t − 1

t

)}
�t =

�∑
t=2

t∑
r=2

2t−r

(
n+ r − 2
r − 2

)
and thus leading to

�2�t� =


0� t = 0� 1
t∑

r=2
2t−r

(
n+r−2
r−2

)
(
n+t−1

t

) � t = 2� 3� � � �

the UMVU estimator of Lq. The UMVU estimator of Lq can also be obtained using
the UMVU estimators of L and � and the application of the theorem in Sec. 4.2.
Thus, L̃q = L̃+ �̃, where ∼ indicates the UMVU estimator of the corresponding
measure.

The results of this section can also be derived working in the framework of
modified power series distribution following Gupta (1974, 1977) and Gupta (1982).

5. Comparison of ML and UMVU Estimators

Whenever two or more estimators of a parametric function are proposed, it
is natural to compare and contrast them. Many different criteria for such a
comparison have been suggested. They are Mean Square Error (MSE), Pitman
nearness, Asymptotic Relative Efficency (ARE), second-order efficiency, and
Asymptotic Expected Deficiency (AED), to name a few. We use the AED citerion
for comparison of ML and UMVU estimators proposed in Secs. 2 and 4 in the case
of ML estimates being naturally less than one. A reason for such a choice is the
“ease of computation”.

5.1. AED

Let T1�X1� X2� � � � � Xn� and T2�X1� X2� � � � � Xn� be two estimators of ����. Let the
measure of performance of Ti be taken as the expected squared error, denoted by
Vn�Ti�� i = 1� 2� Hodges and Lehmann (1970) showed that there exists a unique kn
such that Vkn

�T2� = Vn�T1� and Kn

n
→ 1 as n → �. This led Hodges and Lehmann

to define the AED of T2 relative to T1 as

AED�T2� T1� = lim
n→��kn − n��

provided the limit exists. Hwang and Hu (1990) derived the expression for AED
without any constraint on the variance function of ML estimator of ���� relative
to the UMVU estimator of ����, under certain regularity conditions, in the one
parameter exponential family with probability distribution given by

f�x� �� = exp��1���T�x�+�2���+ d�x�� x ∈ S� � ∈ � (5.1)
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Table 1
AED computation for comparison

Estimable function Range of � Relatively better estimator

pk� k = 1 � < 0�41 ML
� > 0�41 UMVU

pk� k = 2 � < 0�19 or � > 0�62 UMVU
0�19 ≤ � ≤ 0�62 ML

pk� k = 3 � < 0�36 or � > 0�72 UMVU
0�36 ≤ � ≤ 0�72 ML

pk� k = 4 � < 0�48 or � > 0�77 UMVU
0�48 ≤ � ≤ 0�77 ML

pk� k = 5 � < 0�56 or � > 0�81 UMVU
0�56 ≤ � ≤ 0�81 ML

pk� k = 6 � < 0�62 or � > 0�84 UMVU
0�62 ≤ � ≤ 0�84 ML

L�L′
q � < 1 UMVU

Lq � < 0�235 UMVU
� ≥ 0�235 ML

Note: Range of � is approximate.

with respect to a fixed �-finite measure �, where S is a set of real numbers and �
is the parameter space. Let Z =∑n

i=1
T�Xi�

n
. The result of Hwang and Hu (1990) is

reproduced below as Theorem 5.1.

Theorem 5.1. Under certain regularity conditions, the AED of ML estimator ��Z� of
���� relative to the UMVU estimator U�Z� for the exponential family (5.1) is given by

AED g�Z�� U�Z�� = V���

{
�′′′���
�′���

+ 1
4

(
�′′���
�′���

)2
}
+ V ′���

�′′���
�′���

�

where V ′��� = ��′
1���

−1 �

5.2. Comparison of Estimators

We use Theorem 5.1 to compute the AED of ML estimator relative to UMVU
estimator, of pk for k = 1� 2� � � � � 6 for different values of �. Also, the AED of
ML estimators, of measures, relative to their corresponding UMVU estimators are
computed. The results are summarized in Table 1.

6. Recommendation and Related Work

The nature of observations required involves less book keeping in relation to
recording of actual interarrival and service times. The use of UMVU estimator in
relation to ML estimator is recommended for estimation of L and L′

q. This should
aid the queueing analyst in choosing one of the classical estimators. However such
a categorical recommendation of an estimator of system size distribution is not
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possible as is evident from Table 1. But the UMVU estimator can be recommended
for small and large values of traffic intensity.

Classical Estimation in M/D/1 and M/Er/1 queues and Bayesian estimation
in M/M/1, M/Er/1, and M/D/1 queues are studied and will be part of different
communications.

Acknowledgments

The first author is thankful to Dr. Ramesh C. Gupta, University of Maine, Orono,
USA, for providing his articles, and to Council of Scientific and Industrial Research
(CSIR), India. The authors are thankful to a reviewer for his suggestions which led
to a revision.

References

Armero, C., Bayarri, M. J. (1999). Dealing with uncertainties in queues and networks of
queues: A Bayesian approach. In: Ghosh, S., ed. Multivariate, Design and Sampling.
New York: Marcel Dekker. Inc., pp. 579–608.

Armero, C., Conesa, D. (1998). Inference and prediction in bulk arrival queues and queues
with service in stages. Appl. Stochastic Mod. Data Anal. 14:35–46.

Armero, C., Conesa, D. (2000). Prediction in Markovian bulk arrival queues. Queuing Syst.
34:327–350.

Ausin, M. C., Wiper M. P., Lillo, R. E. (2005). Transient Bayesian inference for short
and long-tailed GI/G/1 queueing systems. Statistics and Econometrics series 05,
Universidad Carlos III De Madrid. Working Paper 05-35.

Bhat, U. N., Miller, G. K., Subba Rao, S. (1997). Statistical analysis of queueing systems.
In: Dshalalow, J. H., ed. Frontiers in Queueing-Models and Applications in Science and
Engineering. Boca Raton, FL: CRC Press.

Butler, R. W., Huzurbazaar, A. V. (2000). Bayesian prediction of waiting times in stochastic
models. Canad J. Statist. 28:311–325.

Choudhury, A., Borthakur, A. C. (2008). Bayesian inference and prediction in the single
server Markovian queue. Metrika 67:371–383.

Conti, P. L. (1998). Large sample Bayesian analysis for Geo/G/1 discrete time queueing
models. Technical Report, Dipartmento di Statistica, Probabilitia e Statistiche
Applicate, Universita di Roma “La Sapienza”.

Gross, D., Harris, C. M. (1985). Fundamentals of Queueing Theory. 2nd ed. New York: John
Wiley and Sons.

Gupta, R. C. (1974). Modified power series distribution and some of its applications. Sankhya
Ser. B. 36:288–298.

Gupta, R. C. (1977). Minimum variance unbiased estimation in modified power series
distribution and some of its applications. Commun. Statist. Theor. Meth. 6:979–991.

Gupta, P. L. (1982). Structural properties and estimation in M/Ek/1 queue. Commun. Statist.
Theor. Meth. 11:711–719.

Harishchandra, K., Subba Rao, S. (1988). A note on statistical inference about the traffic
intensity parameter in M/Ek/1 queue. Sankhya, Ser. A 50:144–148.

Hillier, F. S., Lieberman, G. J. (1974). Operations Research. 2nd ed. San Francisco: Holden
Day.

Hodges, J. L., Jr., Lehmann, E. L. (1970). Deficiency. Ann. Math. Statist. 41:783–801.
Huang, M. L., Brill, P. (2001). On estimation in M/G/C/C queues. Int. Trans. Operat. Res.

8:647–657.
Hwang, T., Hu, C. (1990). More comparisons of MLE with UMVUE for exponential

families. Ann. Inst. Statist. Math. 42:65–75.



3336 Srinivas et al.

Kale, B. K. (1999). A First Course in Parametric Inference. New Delhi: Narosa Publishing
House.

Kiessler, P. C., Lund, R. (2009). Technical note: Traffic intensity estimation. Nav. Res. Logist.
56:385–387.

Patel, J., Kapadia, C. H., Owen, D. B. (1976). Handbook of Statistical Distributions. Marcel
Dekker.

Ramirez, P., Lilla, R. E., Wiper, M. P. (2008a). Bayesian analysis of a queueing system with
a long-tailed arrival process. Commun. Statist. Simul. Computat. 37:697–712.

Ramirez. P., Lillo, R. E., Wiper, M. P. (2008b). Inference for double Pareto lognormal
queues with applications. Statistics and econometrics series 02, Universidad Carlos III
De Madrid. Working Paper 08-04.

Saha, K., Paul, S. (2005). Bias – corrected maximum likelihood estimator of the negative
binomial dispersion parameter. Biometrics 61(1):179–185.

Sharma, K. K., Kumar, V. (1999). Inference on M/M/1: (�: FIFO) queue systems. Opsearch
36(1):26–34.

Zheng, S., Seila, A. F. (2000). Some well-behaved estimators for the M/M/1 queue. Operat.
Res. Lett. 26(5):231–235.


