10 research outputs found
Systems and algorithms for wireless sensor networks based on animal and natural behavior
In last decade, there have been many research works about wireless sensor networks (WSNs) focused on improving the network
performance as well as increasing the energy efficiency and communications effectiveness. Many of these new mechanisms have
been implemented using the behaviors of certain animals, such as ants, bees, or schools of fish.These systems are called bioinspired
systems and are used to improve aspects such as handling large-scale networks, provide dynamic nature, and avoid resource
constraints, heterogeneity, unattended operation, or robustness, amongmanyothers.Therefore, thispaper aims to studybioinspired
mechanisms in the field ofWSN, providing the concepts of these behavior patterns in which these new approaches are based. The
paper will explain existing bioinspired systems in WSNs and analyze their impact on WSNs and their evolution. In addition, we
will conduct a comprehensive review of recently proposed bioinspired systems, protocols, and mechanisms. Finally, this paper will
try to analyze the applications of each bioinspired mechanism as a function of the imitated animal and the deployed application.
Although this research area is considered an area with highly theoretical content, we intend to show the great impact that it is
generating from the practical perspective.Sendra, S.; Parra Boronat, L.; Lloret, J.; Khan, S. (2015). Systems and algorithms for wireless sensor networks based on animal and natural behavior. International Journal of Distributed Sensor Networks. 2015:1-19. doi:10.1155/2015/625972S1192015Iram, R., Sheikh, M. I., Jabbar, S., & Minhas, A. A. (2011). Computational intelligence based optimization in wireless sensor network. 2011 International Conference on Information and Communication Technologies. doi:10.1109/icict.2011.5983561Lloret, J., Bosch, I., Sendra, S., & Serrano, A. (2011). A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing. Sensors, 11(6), 6165-6196. doi:10.3390/s110606165Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722Dasgupta, P. (2008). A Multiagent Swarming System for Distributed Automatic Target Recognition Using Unmanned Aerial Vehicles. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 549-563. doi:10.1109/tsmca.2008.918619Quwaider, M., & Biswas, S. (2012). Delay Tolerant Routing Protocol Modeling for Low Power Wearable Wireless Sensor Networks. Network Protocols and Algorithms, 4(3). doi:10.5296/npa.v4i3.2054Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Liu, M., & Song, C. (2012). Ant-Based Transmission Range Assignment Scheme for Energy Hole Problem in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 8(12), 290717. doi:10.1155/2012/290717Riva, G., & Finochietto, J. M. (2012). Pheromone-based In-Network Processing for Wireless Sensor Network Monitoring Systems. Network Protocols and Algorithms, 4(4). doi:10.5296/npa.v4i4.2206Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Kim, J.-Y., Sharma, T., Kumar, B., Tomar, G. S., Berry, K., & Lee, W.-H. (2014). Intercluster Ant Colony Optimization Algorithm for Wireless Sensor Network in Dense Environment. International Journal of Distributed Sensor Networks, 10(4), 457402. doi:10.1155/2014/457402Dressler, F., & Akan, O. B. (2010). A survey on bio-inspired networking. Computer Networks, 54(6), 881-900. doi:10.1016/j.comnet.2009.10.024Atakan, B., & Akan, O. B. (2006). Immune System Based Distributed Node and Rate Selection in Wireless Sensor Networks. 2006 1st Bio-Inspired Models of Network, Information and Computing Systems. doi:10.1109/bimnics.2006.361806Di Pietro, R., & Verde, N. V. (2011). Introducing epidemic models for data survivability in Unattended Wireless Sensor Networks. 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks. doi:10.1109/wowmom.2011.5986165Marwaha, S., Indulska, J., & Portmann, M. (2009). Biologically Inspired Ant-Based Routing in Mobile Ad hoc Networks (MANET): A Survey. 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. doi:10.1109/uic-atc.2009.95Jha, V., Khetarpal, K., & Sharma, M. (2011). A survey of nature inspired routing algorithms for MANETs. 2011 3rd International Conference on Electronics Computer Technology. doi:10.1109/icectech.2011.5942042Fernandez-Marquez, J. L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., & Arcos, J. L. (2012). Description and composition of bio-inspired design patterns: a complete overview. Natural Computing, 12(1), 43-67. doi:10.1007/s11047-012-9324-yCamilo, T., Carreto, C., Silva, J. S., & Boavida, F. (2006). An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks. Lecture Notes in Computer Science, 49-59. doi:10.1007/11839088_5Selvakennedy, S., Sinnappan, S., & Shang, Y. (2006). T-ANT: A Nature-Inspired Data Gathering Protocol for Wireless Sensor Networks. Journal of Communications, 1(2). doi:10.4304/jcm.1.2.22-29Almshreqi, A. M. S., Ali, B. M., Rasid, M. F. A., Ismail, A., & Varahram, P. (2012). An improved routing mechanism using bio-inspired for energy balancing in wireless sensor networks. The International Conference on Information Network 2012. doi:10.1109/icoin.2012.6164367Chen, G., Guo, T.-D., Yang, W.-G., & Zhao, T. (2006). An improved ant-based routing protocol in Wireless Sensor Networks. 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing. doi:10.1109/colcom.2006.361893Okdem, S., & Karaboga, D. (2006). Routing in Wireless Sensor Networks Using Ant Colony Optimization. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06). doi:10.1109/ahs.2006.63Salehpour, A.-A., Mirmobin, B., Afzali-Kusha, A., & Mohammadi, S. (2008). An energy efficient routing protocol for cluster-based wireless sensor networks using ant colony optimization. 2008 International Conference on Innovations in Information Technology. doi:10.1109/innovations.2008.4781748Wen, Y., Chen, Y., & Pan, M. (2008). Adaptive ant-based routing in wireless sensor networks using Energy*Delay metrics. Journal of Zhejiang University-SCIENCE A, 9(4), 531-538. doi:10.1631/jzus.a071382Liao, W.-H., Kao, Y., & Wu, R.-T. (2011). Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Systems with Applications, 38(6), 6599-6605. doi:10.1016/j.eswa.2010.11.079Pavai, K., Sivagami, A., & Sridharan, D. (2009). Study of Routing Protocols in Wireless Sensor Networks. 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies. doi:10.1109/act.2009.133Juan, L., Chen, S., & Chao, Z. (2007). Ant System Based Anycast Routing in Wireless Sensor Networks. 2007 International Conference on Wireless Communications, Networking and Mobile Computing. doi:10.1109/wicom.2007.603Wang, C., & Lin, Q. (2008). Swarm intelligence optimization based routing algorithm for Wireless Sensor Networks. 2008 International Conference on Neural Networks and Signal Processing. doi:10.1109/icnnsp.2008.4590326Jiang, H., Wang, M., Liu, M., & Yan, J. (2012). A quantum-inspired ant-based routing algorithm for WSNs. Proceedings of the 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD). doi:10.1109/cscwd.2012.6221881Okazaki, A. M., & Frohlich, A. A. (2011). Ant-based Dynamic Hop Optimization Protocol: A routing algorithm for Mobile Wireless Sensor Networks. 2011 IEEE GLOBECOM Workshops (GC Wkshps). doi:10.1109/glocomw.2011.6162356Hui, X., Zhigang, Z., & Xueguang, Z. (2009). A Novel Routing Protocol in Wireless Sensor Networks Based on Ant Colony Optimization. 2009 International Conference on Environmental Science and Information Application Technology. doi:10.1109/esiat.2009.460AbdelSalam, H. S., & Olariu, S. (2012). BEES: BioinspirEd backbonE Selection in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 23(1), 44-51. doi:10.1109/tpds.2011.100Da Silva Rego, A., Celestino, J., dos Santos, A., Cerqueira, E. C., Patel, A., & Taghavi, M. (2012). BEE-C: A bio-inspired energy efficient cluster-based algorithm for data continuous dissemination in Wireless Sensor Networks. 2012 18th IEEE International Conference on Networks (ICON). doi:10.1109/icon.2012.6506592Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2012). Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), 965-997. doi:10.1007/s10462-012-9342-2Antoniou, P., Pitsillides, A., Blackwell, T., & Engelbrecht, A. (2009). Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks. 2009 IEEE Congress on Evolutionary Computation. doi:10.1109/cec.2009.4983153Ruihua, Z., Zhiping, J., Xin, L., & Dongxue, H. (2011). Double cluster-heads clustering algorithm for wireless sensor networks using PSO. 2011 6th IEEE Conference on Industrial Electronics and Applications. doi:10.1109/iciea.2011.5975688Kulkarni, R. V., Venayagamoorthy, G. K., & Cheng, M. X. (2009). Bio-inspired node localization in wireless sensor networks. 2009 IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2009.5346107Kulkarni, R. V., & Venayagamoorthy, G. K. (2010). Bio-inspired Algorithms for Autonomous Deployment and Localization of Sensor Nodes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 663-675. doi:10.1109/tsmcc.2010.2049649Xin Song, Cuirong Wang, Wang, J., & Bin Zhang. (2010). A hierarchical routing protocol based on AFSO algorithm for WSN. 2010 International Conference On Computer Design and Applications. doi:10.1109/iccda.2010.5541265Gao, X. Z., Wu, Y., Zenger, K., & Huang, X. (2010). A Knowledge-Based Artificial Fish-Swarm Algorithm. 2010 13th IEEE International Conference on Computational Science and Engineering. doi:10.1109/cse.2010.49Wang, L., & Ma, L. (2011). A hybrid artificial fish swarm algorithm for Bin-packing problem. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. doi:10.1109/emeit.2011.6022829Yiyue, W., Hongmei, L., & Hengyang, H. (2012). Wireless Sensor Network Deployment Using an Optimized Artificial Fish Swarm Algorithm. 2012 International Conference on Computer Science and Electronics Engineering. doi:10.1109/iccsee.2012.453Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Studies in Computational Intelligence, 65-74. doi:10.1007/978-3-642-12538-6_6Goyal, S., & Patterh, M. S. (2013). Performance of BAT Algorithm on Localization of Wireless Sensor Network. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 6(3), 351-358. doi:10.24297/ijct.v6i3.4481Krishnanand, K. N., & Ghose, D. (2006). Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent and Grid Systems, 2(3), 209-222. doi:10.3233/mgs-2006-2301Apostolopoulos, T., & Vlachos, A. (2011). Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem. International Journal of Combinatorics, 2011, 1-23. doi:10.1155/2011/523806Liao, W.-H., Kao, Y., & Li, Y.-S. (2011). A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Systems with Applications, 38(10), 12180-12188. doi:10.1016/j.eswa.2011.03.053Sun, Y., Jiang, Q., & Zhang, K. (2012). A clustering scheme for Reachback Firefly Synchronicity in wireless sensor networks. 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content. doi:10.1109/icnidc.2012.6418705Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-Hill. International Journal of Swarm Intelligence Research, 3(4), 1-22. doi:10.4018/jsir.2012100101KumarE, S., S. M., K., & Kumar B. P., V. (2014). Clustering Protocol for Wireless Sensor Networks based on Rhesus Macaque (Macaca mulatta) Animal's Social Behavior. International Journal of Computer Applications, 87(8), 20-27. doi:10.5120/15229-3754Breza, M., & McCann, J. A. (2008). Lessons in Implementing Bio-inspired Algorithms on Wireless Sensor Networks. 2008 NASA/ESA Conference on Adaptive Hardware and Systems. doi:10.1109/ahs.2008.72Aziz, N. A. B. A., Mohemmed, A. W., & Sagar, B. S. D. (2007). Particle Swarm Optimization and Voronoi diagram for Wireless Sensor Networks coverage optimization. 2007 International Conference on Intelligent and Advanced Systems. doi:10.1109/icias.2007.4658528Falcon, R., Li, X., Nayak, A., & Stojmenovic, I. (2012). A harmony-seeking firefly swarm to the periodic replacement of damaged sensors by a team of mobile robots. 2012 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2012.6363859Antoniou, P., & Pitsillides, A. (2010). A bio-inspired approach for streaming applications in wireless sensor networks based on the Lotka–Volterra competition model. Computer Communications, 33(17), 2039-2047. doi:10.1016/j.comcom.2010.07.020Benahmed, K., Merabti, M., & Haffaf, H. (2012). Inspired Social Spider Behavior for Secure Wireless Sensor Networks. International Journal of Mobile Computing and Multimedia Communications, 4(4), 1-10. doi:10.4018/jmcmc.2012100101Alrajeh, N. A., & Lloret, J. (2013). Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(10), 351047. doi:10.1155/2013/351047Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic Algorithm for Hierarchical Wireless Sensor Networks. Journal of Networks, 2(5). doi:10.4304/jnw.2.5.87-97Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic Algorithm for Energy Efficient Clusters in Wireless Sensor Networks. Fourth International Conference on Information Technology (ITNG’07). doi:10.1109/itng.2007.97Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks, 51(4), 1031-1051. doi:10.1016/j.comnet.2006.06.013Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11-12), 1756-1766. doi:10.1016/j.camwa.2008.10.036Nan, G.-F., Li, M.-Q., & Li, J. (2007). Estimation of Node Localization with a Real-Coded Genetic Algorithm in WSNs. 2007 International Conference on Machine Learning and Cybernetics. doi:10.1109/icmlc.2007.4370265Saleem, K., Fisal, N., Abdullah, M. S., Zulkarmwan, A. B., Hafizah, S., & Kamilah, S. (2009). Proposed Nature Inspired Self-Organized Secure Autonomous Mechanism for WSNs. 2009 First Asian Conference on Intelligent Information and Database Systems. doi:10.1109/aciids.2009.75Jabbari, A., & Lang, W. (2010). Advanced Bio-inspired Plausibility Checking in a Wireless Sensor Network Using Neuro-immune Systems: Autonomous Fault Diagnosis in an Intelligent Transportation System. 2010 Fourth International Conference on Sensor Technologies and Applications. doi:10.1109/sensorcomm.2010.24Ponnusamy, V., & Abdullah, A. (2010). Biologically Inspired (Botany) Mobile Agent Based Self-Healing Wireless Sensor Network. 2010 Sixth International Conference on Intelligent Environments. doi:10.1109/ie.2010.46Li, J., Cui, Z., & Shi, Z. (2012). An Improved Artificial Plant Optimization Algorithm for Coverage Problem in WSN. Sensor Letters, 10(8), 1874-1878. doi:10.1166/sl.2012.2627Sendra, S., Llario, F., Parra, L., & Lloret, J. (2014). Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks. Recent Advances in Communications and Networking Technology, 2(2), 91-101. doi:10.2174/22117407112016660012Sendra, S., Granell, E., Lloret, J., & Rodrigues, J. J. P. C. (2013). Smart Collaborative Mobile System for Taking Care of Disabled and Elderly People. Mobile Networks and Applications, 19(3), 287-302. doi:10.1007/s11036-013-0445-zGarcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Sendra, S., Lloret, J., Rodrigues, J. J. P. C., & Aguiar, J. M. (2013). Underwater Wireless Communications in Freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794-1797. doi:10.1109/lcomm.2013.072313.131214Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s12040423
Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males
This study aimed to determine whether 2 wk of high-intensity intermittent training (HIIT) altered inflammatory status in plasma and adipose tissue in overweight and obese males. Twelve participants [mean (SD): age 23.7 (5.2) yr, body mass 91.0 (8.0) kg, body mass index 29.1 (3.1) kg/m2] undertook six HIIT sessions over 2 wk. Resting blood and subcutaneous abdominal adipose tissue samples were collected and insulin sensitivity determined, pre- and posttraining. Inflammatory proteins were quantified in plasma and adipose tissue. There was a significant decrease in soluble interleukin-6 receptor (sIL-6R; P = 0.050), monocyte chemotactic protein-1 (MCP-1, P = 0.047), and adiponectin (P = 0.041) in plasma posttraining. Plasma IL-6, intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), IL-10, and insulin sensitivity did not change. In adipose tissue, IL-6 significantly decreased (P = 0.036) and IL-6R increased (P = 0.037), while adiponectin tended to decrease (P = 0.056), with no change in ICAM-1 posttraining. TNF-α, MCP-1, and IL-10 were not detectable in adipose tissue. Adipose tissue homogenates were then resolved using one-dimensional gel electrophoresis, and major changes in the adipose tissue proteome, as a consequence of HIIT, were evaluated. This proteomic approach identified significant reductions in annexin A2 (P = 0.046) and fatty acid synthase (P = 0.016) as a response to HIIT. The present investigation suggests 2 wk of HIIT is sufficient to induce beneficial alterations in the resting inflammatory profile and adipose tissue proteome of an overweight and obese male cohort
Lignocellulosic materials: sources and processing technologies
Lignocellulosic materials (LCMs) are one of the most promising feedstock for several biotechnological purposes. However, these LCMs are highly complex and present a robust structure of difficult access. For the valorization of each fraction of LCMs, a pre-treatment step is necessary in order to alter and/or remove the surrounding matrix of lignin and hemicellulose and increase the cellulose accessibility. Each pre-treatment has a specific effect on the LCM components and generally more than one pre-treatment step is necessary to obtain the fractions. This chapter primarily covers the definition of LCMs, their composition and varied sources. Subsequently, it is presented their structure, and the advantages and disadvantages of the different pre-treatment methods. Furthermore, a section with examples of successful processing technologies and valorization of each LCM component using different pre-treatment technologies is presented.info:eu-repo/semantics/publishedVersio