19 research outputs found
Luciferase-Based Detection of Antibodies for the Diagnosis of HPV-Associated Head and Neck Squamous Cell Carcinoma
Point-of-care tests are needed for the screening of head and neck squamous cell carcinoma (HNSCC) and other malignancies. Luciferase immunoprecipitation systems (LIPS), employing light-emitting proteins, were used to examine serum antibodies against several cancer-associated targets in blood donor controls and subjects with colon cancer (CC) and HNSCC. The assessment of antibodies against the wild type p53 tumor antigen showed that approximately 25% of the CC and 20% of the HNSCC patients were seropositive. In addition, humoral responses against two p53 mutants, p53-R175H and p53-R273H, generally tracked the antibody responses seen against wild type p53. Analysis of antibodies against highly specific biomarkers of HPV-16-associated malignancy, E2, E6, and E7 oncoproteins, revealed no seropositivity in blood donors and CC patients. However, 45% (9/20) of the HNSCC patients showed E6 seropositivity, which overlapped all the detectable E2 (40%; 8/20) and E7 seropositive subjects (35%; 7/20). Using neodymium magnets, ultrarapid LIPSTICKS testing of HPV-16 E6 antibodies in <60 s per HNSCC sample demonstrated almost the same diagnostic performance (40% sensitivity and 100% specificity) as LIPS testing in 2.5 h. While additional improvements and standardization are needed, these results highlight the possibility of using these approaches for the diagnosis of HPV-16-associated HNSCC
Organoid and Spheroid Tumor Models: Techniques and Applications
Techniques to develop three-dimensional cell culture models are rapidly expanding to bridge the gap between conventional cell culture and animal models. Organoid and spheroid cultures have distinct and overlapping purposes and differ in cellular sources and protocol for establishment. Spheroids are of lower complexity structurally but are simple and popular models for drug screening. Organoids histologically and genetically resemble the original tumor from which they were derived. Ease of generation, ability for long-term culture and cryopreservation make organoids suitable for a wide range of applications. Organoids-on-chip models combine organoid methods with powerful designing and fabrication of micro-chip technology. Organoid-chip models can emulate the dynamic microenvironment of tumor pathophysiology as well as tissue–tissue interactions. In this review, we outline different tumor spheroid and organoid models and techniques to establish them. We also discuss the recent advances and applications of tumor organoids with an emphasis on tumor modeling, drug screening, personalized medicine and immunotherapy
Expression Patterns of CREBs in Oocyte Growth and Maturation of Fish.
In fish, oocyte meiotic maturation is regulated by 17α, 20β-dihydroxy-progesterone through cAMP. To study the role of cAMP response element binding protein (CREB) in meiotic maturation, we cloned and characterized the expression pattern of CREBs from two fish models, the Nile tilapia and catfish. In the Nile tilapia three different CREBs were identified where in CREB1 was found in many tissues including gonads with abundant expression in testis. CREB2, few amino acids shorter than CREB1, was expressed in several tissues with abundant expression in ovary. In addition, a 3'UTR variant form, CREB3 was exclusively found in ovary. During natural 14-day ovarian cycle of the Nile tilapia, CREB1 expression was stable throughout vitellogenesis with a sharp decrease on the day of spawning. In contrast, CREB2 remain unchanged throughout the ovarian cycle, however elevated in 11-day full-grown immature ovarian follicle and after hCG-induction. Interestingly, CREB3 expression was induced three folds on the day of spawning as well as during hCG-induced oocyte maturation. Based on the synergistic expression pattern, CREB1 is likely to control oocyte growth, whereas CREB 2 and 3 contribute to oocyte maturation in tilapia and the latter seems to be critical. In catfish, a single form of CREB showed a maximum expression during spawning phase and hCG-induced maturation both in vivo and in vitro augmented CREB expression. These results suggest that spatial and temporal expression of CREBs seems to be important for final oocyte maturation and may also regulate oocyte growth in fish
Ultrarapid Measurement of Diagnostic Antibodies by Magnetic Capture of Immune Complexes
Contains fulltext :
189976.pdf (publisher's version ) (Open Access
ASTX660, an antagonist of cIAP1/2 and XIAP, increases antigen processing machinery and can enhance radiation-induced immunogenic cell death in preclinical models of head and neck cancer
Inhibitor of apoptosis protein (IAP) antagonists have shown activity in preclinical models of head and neck squamous cell carcinoma (HNSCC), and work across several cancer types has demonstrated diverse immune stimulatory effects including enhancement of T cell, NK cell, and dendritic cell function. However, tumor-cell-intrinsic mechanisms for this immune upregulation have been largely unexplored. In this study, we show that ASTX660, an antagonist of cIAP1/2 and XIAP, induces expression of immunogenic cell death (ICD) markers in sensitive HNSCC cell lines in vitro. Experiments in syngeneic mouse models of HNSCC showed that ASTX660 can also enhance radiation-induced ICD in vivo. On a functional level, ASTX660 also enhanced killing of multiple murine cell lines by cytotoxic tumor-infiltrating lymphocytes, and when combined with XRT, stimulated clonal expansion of antigen-specific T lymphocytes and expression of MHC class I on the surface of tumor cells. Flow cytometry experiments in several human HNSCC cell lines showed that MHC class I (HLA-A,B,C) was reliably upregulated in response to ASTX660 + TNFα, while increases in other antigen processing machinery (APM) components were variable among different cell lines. These findings suggest that ASTX660 may enhance anti-tumor immunity both by promoting ICD and by enhancing antigen processing and presentation
Cladogram showing phylogenetic analysis of the Nile tilapia and catfish CREBs with other vertebrate analogs.
<p>(Accession no.: Human A <u>NM_004379</u>; Human B <u>NM_134442</u>; Mouse C <u>NM_001037726</u>; <i>Xenopus</i><u>NM_001086603</u>;Mouse A <u>NM_009952</u>; Mouse B <u>NM_133828</u>; <u>Rat A NM_ 134443</u>; Rat B <u>NM_031017</u>; Chicken <u>NM_ 204450</u>; Zebrafish <u>NM_ 200909</u>; Pig <u>NM_001099929</u>; Cattle <u>NM_174285</u>; Songbird <u>NM_001048256</u>).</p
Tissue distribution pattern of tilapia CREBs as determined by semi-quantitative RT-PCR.
<p>A plasmid DNA of CREB partial cDNA was used as positive control (PC) and PCR reaction without RT was used as negative control (NC). (Ma, Marker; B, Brain; A, Adrenal; H, Heart; S, Spleen; L, Lung; I, Intestine; K, Kidney; M, Muscle; T, Testis; O, Ovary; F, Ovarian follicle).</p