29 research outputs found

    Standard operating procedure for curation and clinical interpretation of variants in cancer

    Get PDF
    Manually curated variant knowledgebases and their associated knowledge models are serving an increasingly important role in distributing and interpreting variants in cancer. These knowledgebases vary in their level of public accessibility, and the complexity of the models used to capture clinical knowledge. CIViC (Clinical Interpretation of Variants in Cancer - www.civicdb.org) is a fully open, free-to-use cancer variant interpretation knowledgebase that incorporates highly detailed curation of evidence obtained from peer-reviewed publications and meeting abstracts, and currently holds over 6300 Evidence Items for over 2300 variants derived from over 400 genes. CIViC has seen increased adoption by, and also undertaken collaboration with, a wide range of users and organizations involved in research. To enhance CIViC\u27s clinical value, regular submission to the ClinVar database and pursuit of other regulatory approvals is necessary. For this reason, a formal peer reviewed curation guideline and discussion of the underlying principles of curation is needed. We present here the CIViC knowledge model, standard operating procedures (SOP) for variant curation, and detailed examples to support community-driven curation of cancer variants

    Open-Sourced CIViC Annotation Pipeline to identify and annotate clinically relevant variants using single-molecule molecular inversion probes

    Get PDF
    PURPOSE: Clinical targeted sequencing panels are important for identifying actionable variants for patients with cancer; however, existing approaches do not provide transparent and rationally designed clinical panels to accommodate the rapidly growing knowledge within oncology. MATERIALS AND METHODS: We used the Clinical Interpretations of Variants in Cancer (CIViC) database to develop an Open-Sourced CIViC Annotation Pipeline (OpenCAP). OpenCAP provides methods to identify variants within the CIViC database, build probes for variant capture, use probes on prospective samples, and link somatic variants to CIViC clinical relevance statements. OpenCAP was tested using a single-molecule molecular inversion probe (smMIP) capture design on 27 cancer samples from 5 tumor types. In total, 2,027 smMIPs were designed to target 111 eligible CIViC variants (61.5 kb of genomic space). RESULTS: When compared with orthogonal sequencing, CIViC smMIP sequencing demonstrated a 95% sensitivity for variant detection (n = 61 of 64 variants). Variant allele frequencies for variants identified on both sequencing platforms were highly concordant (Pearson\u27s CONCLUSION: The OpenCAP design paradigm demonstrates the utility of an open-source and open-access database built on attendant community contributions with peer-reviewed interpretations. Use of a public repository for variant identification, probe development, and variant interpretation provides a transparent approach to build dynamic next-generation sequencing-based oncology panels

    Distinct clonal identities of B-ALLs arising after lenolidomide therapy for multiple myeloma

    Get PDF
    Patients with multiple myeloma (MM) who are treated with lenalidomide rarely develop a secondary B-cell acute lymphoblastic leukemia (B-ALL). The clonal and biological relationship between these sequential malignancies is not yet clear. We identified 17 patients with MM treated with lenalidomide, who subsequently developed B-ALL. Patient samples were evaluated through sequencing, cytogenetics/fluorescence in situ hybridization (FISH), immunohistochemical (IHC) staining, and immunoglobulin heavy chain (IgH) clonality assessment. Samples were assessed for shared mutations and recurrently mutated genes. Through whole exome sequencing and cytogenetics/FISH analysis of 7 paired samples (MM vs matched B-ALL), no mutational overlap between samples was observed. Unique dominant IgH clonotypes between the tumors were observed in 5 paired MM/B-ALL samples. Across all 17 B-ALL samples, 14 (83%) had a TP53 variant detected. Three MM samples with sufficient sequencing depth (\u3e500×) revealed rare cells (average of 0.6% variant allele frequency, or 1.2% of cells) with the same TP53 variant identified in the subsequent B-ALL sample. A lack of mutational overlap between MM and B-ALL samples shows that B-ALL developed as a second malignancy arising from a founding population of cells that likely represented unrelated clonal hematopoiesis caused by a TP53 mutation. The recurrent variants in TP53 in the B-ALL samples suggest a common path for malignant transformation that may be similar to that of TP53-mutant, treatment-related acute myeloid leukemia. The presence of rare cells containing TP53 variants in bone marrow at the initiation of lenalidomide treatment suggests that cellular populations containing TP53 variants expand in the presence of lenalidomide to increase the likelihood of B-ALL development

    CIViCdb 2022: Evolution of an open-access cancer variant interpretation knowledgebase

    Get PDF
    CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC\u27s functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing \u3e3200 variants in \u3e470 genes from \u3e3100 publications

    Maternal mental health in primary care in five low- and middle-income countries: a situational analysis

    Full text link

    CIViCdb 2022: evolution of an open-access cancer variant interpretation knowledgebase

    Get PDF
    CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC’s functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications

    Route of myomectomy and fertility: a prospective cohort study

    Get PDF
    OBJECTIVE: To assess prospectively the association between the myomectomy route and fertility. DESIGN: Prospective cohort study. SETTING: The Comparing Treatments Options for Uterine Fibroids (COMPARE-UF) Study is a multisite national registry of eight clinic centers across the United States. PATIENT(S): Reproductive-aged women undergoing surgery for symptomatic uterine fibroids. INTERVENTION(S): Not applicable. MAIN OUTCOME MEASURE(S): We used life-table methods to estimate cumulative probabilities and 95% confidence intervals (CI) of pregnancy and live birth by the myomectomy route during 12, 24, and 36 months of follow-up (2015-2019). We also conducted 12-month interval-based analyses that used logistic regression to estimate odds ratios and 95% CIs for associations of interest. In all analyses, we used propensity score weighting to adjust for differences across surgical routes. RESULT(S): Among 1,095 women who underwent myomectomy (abdominal = 388, hysteroscopic = 273, and laparoscopic = 434), 202 reported pregnancy and 91 reported live birth during 36 months of follow-up. There was little difference in the 12-month probability of pregnancy or live birth by route of myomectomy overall or among women intending pregnancy. In interval-based analyses, adjusted ORs for pregnancy were 1.28 (95% CI, 0.76-2.14) for hysteroscopic myomectomy and 1.19 (95% CI, 0.76-1.85) for laparoscopic myomectomy compared with abdominal myomectomy. Among women intending pregnancy, adjusted ORs were 1.27 (95% CI, 0.72-2.23) for hysteroscopic myomectomy and 1.26 (95% CI, 0.77-2.04) for laparoscopic myomectomy compared with abdominal myomectomy. Associations were slightly stronger but less precise for live birth. CONCLUSION(S): The probability of conception or live birth did not differ appreciably by the myomectomy route among women observed for 36 months postoperatively. CLINICAL TRIALS REGISTRATION NUMBER: (NCT02260752, clinicaltrials.gov)
    corecore